Toppdehn2827
Due to the diversity of sulfur valence in cobalt-based sulfides, it is difficult to control the crystal phase and composition of the products during synthesis. Herein, a one-pot hydrothermal method is reported to self-assemble the cobalt sulfides (CoS2, Co9S8and Co3S4) with hollow nanostructures. https://www.selleckchem.com/products/leptomycinb.html The whole preparation process is simple and mild, avoiding high temperature calcination. The performances of the three kinds of cobalt sulfide in superior supercapacitors and electrocatalytic oxygen evolution performance applications follow the order of CoS2 > Co9S8 > Co3S4. Further analysis demonstrates that the performance difference in these cobalt sulfides may be attributed to three factors the presence ofS22-,the coordination environment of Co and the presence of continuous network of Co-Co bonds. The distinctive electrochemical performance of CoS2and Co9S8may help us to better understand the excellent electrochemical activity of metal polysulfides and metal sulfides after doping or alloying. Therefore, this work may provide a reference in understanding and designing the electrode materials for highly efficient applications in the fields of energy storage and conversion.We report the complex implications of inter-diffusion between polycrystalline FePt/FeCo layers as an impact of the FeCo underlayer on the structural and magnetic properties of the system. The crystalline growth of FePt strongly reduces in an entirely diffused system compared to the one with lesser diffusion, while the crystalline structure of FeCo is apparently less affected. Charge redistribution occurs between Fe, Co and Pt ensuring increased Co-Pt and Fe-Pt interactions with higher diffusion. Thereafter, we combine hysteresis and magnetic force microscopy measurements to show that the interfacial deformations result in the distinct out-plane magnetic behaviour of the system. FeCo@FePt nano-composite like structure, originating due to interfacial diffusion, shows interactions between two magnetic phases with in-plane low anisotropy exhibiting wasp-shaped out-plane hysteresis loop. Whereas the layered structure of FePt/FeCo films shows random anisotropy with a significant out-plane contribution even in the polycrystalline films. Micromagnetic modelling demonstrates coercivity deterioration and reduction of switching field due to the formation of a slightly diffused interface. Contrarily, the experimental observations for complete diffusion between the two layers are explained by simulating the inhomogeneous distribution of anisotropies along the film plane. These studies provide deep perceptions of the magnetic properties of FePt/FeCo system governed by diffusion kinetics which are valuable to achieve desired magnetic characteristics using this system.We have studied the valence effects on the stability of Stone-Wales (SW) defect in some typical two-dimensional honeycomb crystals containing group-IV, V, and VI elements employing density functional theory. The energetics involved in an in-plane formation process of SW defects in pristine and substitutionally doped materials is simulated. The SW defects are stable and have a rotation angle about 90 degree in the group-IV materials. They may become less stable with a smaller rotation angle in the group-V materials and seem difficult to exist in the group-VI materials. Group-VI doping may help eliminate SW defects while group-IV and V doping might introduce SW defects in some group-VI compounds.In this paper, the Nb2CTxMXene nanosheets were fabricated and the corresponding microstructures were investigated. The nonlinear optical response was illustrated by open aperture Z-scan and I-scan methods. The ground and the excited state absorption cross-sections of 2D Nb2CTxMXene were also investigated. As the saturable absorber (SA), the Nb2CTxMXene was applied in the passively Q-switched TmYAP laser. 1.96μs Q-switched pulses with 3.97 W peak power were achieved at the repetition frequency of 80 kHz. Further theoretical model was built by using the coupled rate equations in simulating the dynamic process of the passively Q-switched TmYAP laser. The numerical simulation results are fundamentally in agreement with the experimental results, which proves the Nb2CTxMXene can be a good potential nanomaterial for further optoelectronic applications.Purpose.We have previously proposed an intelligent automatic treatment planning (IATP) framework that builds a virtual treatment planner network (VTPN) to operate a treatment planning system (TPS) to generate high-quality radiation therapy (RT) treatment plans. While the potential of IATP in automating RT treatment planning has been demonstrated, its poor scalability caused by an almost linear growth of network size with the number of treatment planning parameters (TPPs) is a bottleneck, preventing its application in complicate, but clinically relevant treatment planning problems. The decision-making behavior of the trained network is hard to understand. Motivated by the decision-making process of a human planner, this study proposes a hierarchical IATP framework.Methods and materials.The hierarchical VTPN (HieVTPN) consists of three networks, i.e. Structure-Net, Parameter-Net, and Action-Net. When interacting with a TPS, the networks are employed in a sequential order in each step to decide the structure to ieVTPN was able to generate high-quality plans for 59 testing patient cases that were not included in training process, achieving an average plan score of 8.62 (±0.83), with 9 being the maximal score. The score was comparable to that of the VTPN, 8.45 (±0.48). For SBRT planning, HieVTPN achieved an average plan score of 139.07 on five testing patient cases compared to the score of 132.21 averaged over the human plans summited for competition in AAMD/RSS plan study. Different from VTPN with network size linearly scaling with the number of TPPs, the network size of HieVTPN is almost independent of the number of TPPs. It was also observed that the decision-making behaviors of HieVTPN were understandable and generally agreed with the human experience.Conclusions.With the scalability and explainability, the hierarchical IATP framework is more favorable than the previous framework in terms of handling treatment planning problems involving a large number of TPPs.