Tolstrupfranklin2304
Hematopoiesis in the mouse and other mammals occurs in several waves and arises from distinct anatomic sites. Transgenic mice expressing fluorescent reporter proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to more restricted progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene, survey available fluorescent probes, and describe methods for confirming and analyzing transgene expression in the hematopoietic tissues of the embryo, fetus, and postnatal/adult animal.Colorectal cancer animal model is a very useful tool to explore the tumor initiation and development. In the past year, many methods have been used for building up the mouse model including the subcutaneous injection and cecal wall injection or implantation. But this model cannot reflect the native stromal environment of the colon mucosa. Recently, the in vivo murine endoscopy has been developed allowing high-resolution imaging of the colon. Endoscopy orthotopic injection tumor cell line becomes a low cost, fast tumor growth simple technique. In this chapter, we describe detailed protocols for rapidly and efficiently building up colon cancer tumors model by using the colonoscopy-guided mucosal injection. This model can be used to explore drug testing, gene function assessment, and cancer metastasis.Crohn's disease (CD) and ulcerative colitis are two main clinically defined forms of chronic inflammatory bowel disease (IBD). Chronic intestinal inflammation is inextricably linked to colitis-associated colon carcinogenesis (CAC). Patients with ulcerative colitis (UC) and Crohn's disease (CD) have an increased risk of colon cancer. Our understanding of IBD and IBD-associated colon carcinogenesis depends largely on rodent models. AOM-DSS-induced colitis-associated colon cancer in mice is the most widely used and accepted model that can recapitulate the human IBD-associated colon cancer. Here, we have provided detailed protocols of this mouse model of experimentally induced chronic intestinal inflammation-associated colon cancer. We will also discuss the protocols for the isolation and analysis of inflammatory immune cells from the colon.Proteinuria is a widely used marker of renal disease and is strongly associated with renal and cardiovascular outcomes. The molecular mechanisms underlying filtration of serum proteins through the glomerular filtration barrier (GFB) remain to be determined. Since the GFB is a complex structure, studies of albumin or IgG trafficking in cultured cells in vitro may not fully recapitulate these processes in vivo. In other epithelial cells including renal proximal tubular cells, the neonatal Fc receptor (FcRn) is required to divert albumin and IgG from the degradative pathway which allows these proteins to be recycled or transcytosed. To examine the role of podocyte FcRn in albumin and IgG trafficking in vivo, we detail the creation of a podocyte-specific FcRn knockout mouse and describe methods for examining intraglomerular detection of albumin and IgG in these mice.Diabetes mellitus (DM) is caused either due to insulin deficiency (T1DM) or insulin resistance (T2DM). DM increases the risk of heart failure by diabetic cardiomyopathy (DMCM), a cardiac muscle disorder that leads to a progressive decline in diastolic function, and ultimately systolic dysfunction. Mouse models of T1DM and T2DM exhibit clinical signs of DMCM. Growing evidence implicates microRNA (miRNA), an endogenous, non-coding, regulatory RNA, in the pathogenesis and signaling of DMCM. Therefore, inhibiting deleterious miRNAs and mimicking cardioprotective miRNAs could provide a potential therapeutic intervention for DMCM. miRNA-133a (miR-133a) is a highly abundant miRNA in the human heart. It is a cardioprotective miRNA, which is downregulated in the DM heart. It has anti-hypertrophic and anti-fibrotic effects. miR-133a mimic treatment after the onset of early DMCM can reverse histological and clinical signs of the disease in mice. We hypothesized that overexpression of cardiac-specific miR-133a in Ins2+/- Akita (T1DM) mice can prevent progression of DMCM. Here, we describe a method to create and validate cardiac-specific Ins2+/-/miR-133aTg mice to determine whether cardiac-specific miR-133a overexpression prevents development of DMCM. These strategies demonstrate the value of genetic modeling of human disease such as DMCM and evaluate the potential of miRNA as a therapeutic intervention.The tumor microenvironment (TME) contains stromal cells in a complex interaction with cancer cells. This relationship has become better understood with the use of fluorescent proteins for in vivo imaging, originally developed by our laboratories. Spectrally-distinct fluorescent proteins can be used for color-coded imaging of the complex interaction of the tumor microenvironment in the living state using cancer cells expressing a fluorescent protein of one color and host mice expressing another-color fluorescent protein. Cancer cells engineered in vitro to express a fluorescent protein were orthotopically implanted into transgenic mice expressing a fluorescent protein of a different color. Confocal microscopy was then used for color-coded imaging of the TME. Color-coded imaging of the TME has enabled us to discover that stromal cells are necessary for metastasis. Patient-derived orthotopic xenograft (PDOX) tumors were labeled by first passaging them orthotopically through transgenic nude mice expressing either green, red, or cyan fluorescent protein in order to label the stromal cells of the tumor (Yang et al., Cancer Res 648651-8656, 2004; Yang et al. J Cell Biochem 106 279-284, 2009). The colored stromal cells become stably associated with the PDOX tumors through multiple passages in transgenic colored nude mice or non-colored nude mice. The fluorescent protein-expressing stromal cells included cancer-associated fibroblasts and tumor-associated macrophages. Color-coded imaging enabled the visualization of apparent fusion of cancer and stromal cells. Color-coded imaging is a powerful tool visualizing the interaction of cancer and stromal cells during cancer progression and treatment.Type 1 diabetes (T1D) is an autoimmune disease, where insulin-producing β-cells in the pancreas are inappropriately recognized and destroyed by immune cells. Islet transplantation is the most successful cell-based therapy for T1D individuals who experience frequent and severe life-threatening hypoglycemia. However, this therapy is extremely restricted owing to the limited availability of donor pancreas. In recent years, significant progress has been made in generating β-cells from stem/progenitor cells using different approaches of in vitro differentiation. The insulin production from such in vitro generated β-cells is still far less than that observed in islet β-cells. We employed a novel strategy to improve the efficiency of progenitor cell differentiation by performing partial mouse pancreas resection after transplanting in vitro generated insulin-producing cells under the kidney capsule of these mice. Pancreas resection (pancreatectomy) has been shown to induce regenerative pathways, leading to regeneration of almost the entire resected pancreas over 3-5 weeks in mice. We found that in our method, regenerating mouse pancreas promotes better graft differentiation/maturation and insulin production from transplanted cells. In this chapter, we detail the protocols used for transplantation of in vitro differentiated cells in immunocompromised mice, partial pancreatectomy in host (NOD scid) mice, and assessment of graft function. We believe that our protocols provide a solid platform for further studies aimed at understanding growth/differentiation molecules secreted from regenerating pancreas that promote graft maturation.Parkinson's disease is a neurodegenerative disorder characterized by accumulation of misfolded α-synuclein within the central nervous system (CNS). Retinal manifestations have been widely described as a prodromal symptom; however, we have a limited understanding of the retinal pathology associated with Parkinson's disease. The strong similarities between the retina and the brain and the accessibility of the retina has potentiated studies to investigate retinal pathology in an effort to identify biomarkers for early detection, as well as for monitoring the progression of disease and efficacy of therapies as they become available. Here, we discuss a study conducted using a transgenic mouse model of Parkinson's disease (TgM83, expressing human α-synuclein containing the familial PD-associated A53T mutation) to demonstrate the effect of the A53T α-synuclein mutation on the retina. Additionally, we show that "seeding" with brain homogenates from clinically ill TgM83 mice accelerates the accumulation of retinal α-synuclein. The work described in this chapter provides insight into retinal changes associated with Parkinson's disease and identifies retinal indicators of Parkinson's disease pathogenesis that could serve as potential biomarkers for early detection.The mammalian hippocampus shows a remarkable capacity for continued neurogenesis throughout life. Newborn neurons, generated by the radial neural stem cells (NSCs), are important for learning and memory as well as mood control. During aging, the number and responses of NSCs to neurogenic stimuli diminish, leading to decreased neurogenesis and age-associated cognitive decline and psychiatric disorders. Thus, adult hippocampal neurogenesis has been the subject of intense investigation, generating both excitement and controversy. Identifying the core molecular machinery responsible for NSC preservation is of fundamental importance if we are to use neurogenesis to halt or reverse hippocampal age-related pathology. Here, we briefly overview the most frequently used mouse models to study hippocampal neurogenesis and then focus on a unique mouse model that allows NSC-specific studies based on their unique expression of lunatic fringe (Lfng). The Lfng-eGFP and Lfng(BAC)-CreERT2;RCL-tdT transgenic mice provide us with an excellent tool to resolve long-standing questions regarding the properties of NSCs, such as their specific molecular composition, potency, and plasticity, in isolation from any other cell in the hippocampal neurogenic niche.Like bacterial and cytoplasmic ribosomes, mitoribosomes are large ribonucleoprotein complexes with molecular weights in the range of several million Daltons. Traditionally, studying the assembly of such high molecular weight complexes is done using ultracentrifugation through linear density gradients, which remains the method of choice due to its versatility and superior resolving power in the high molecular weight range. selleck kinase inhibitor Here, we present a protocol for the analysis of mitoribosomal assembly in heart mitochondrial extracts using linear density sucrose gradients that we have previously employed to characterize the essential role of different mitochondrial proteins in mitoribosomal biogenesis. This protocol details in a stepwise manner a typical mitoribosomal assembly analysis starting with isolation of mitochondria, preparation and ultracentrifugation of the gradients, fractionation and ending with SDS-PAGE, and immunoblotting of the gradient fractions. Even though we provide an example with heart mitochondria, this protocol can be directly applied to virtually all mouse tissues, as well as cultured cells, with little to no modifications.