Tobinhouse5248

Z Iurium Wiki

Photodiodes are fundamental components in modern optoelectronics. Heterojunction photodiodes, simply configured by two different contact materials, have been a hot research topic for many years. Currently reported self-biased heterojunction photodiodes routinely have external quantum efficiency (EQE) significantly below 100% due to optical and electrical losses. Herein, an approach that virtually overcomes this 100% EQE challenge via low-aspect-ratio nanostructures and drift-dominated photocarrier transport in a heterojunction photodiode is proposed. Broadband near-ideal EQE is achieved in nanocrystal indium tin oxide/black silicon (nc-ITO/b-Si) Schottky photodiodes. The b-Si comprises nanostalagmites which balance the antireflection effect and surface morphology. The built-in electric field is explored to match the optical generation profile, realizing enhanced photocarrier transport over a broadband of photogeneration. The devices exhibit unprecedented EQE among the reported leading-edge heterojunction photodiodes average EQE surpasses ≈98% for wavelengths of 570-925 nm, while overall EQE is greater than ≈95% from 500 to 960 nm. Further, only elementary fabrication techniques are explored to achieve these excellent device properties. A heart rate sensor driven by nanowatt faint light is demonstrated, indicating the enormous potential of this near-ideal b-Si photodiode for low power consuming applications.Despite the significance for wave physics and potential applications, high-efficiency frequency conversion of low-frequency waves cannot be achieved with conventional nonlinearity-based mechanisms with poor mode purity, conversion efficiency, and real-time reconfigurability of the generated harmonic waves in both optics and acoustics. Rotational Doppler effect provides an intuitive paradigm to shifting the frequency in a linear system which, however, needs a spiral-phase change upon the wave propagation. Here a rotating passive linear vortex metasurface is numerically and experimentally presented with close-to-unity mode purity (>93%) and high conversion efficiency (>65%) in audible sound frequency as low as 3000 Hz. The topological charge of the transmitted sound is almost immune from the rotational speed and transmissivity, demonstrating the mechanical robustness and stability in adjusting the high-performance frequency conversion in situ. These features enable the researchers to cascade multiple vortex metasurfaces to further enlarge and diversify the extent of sound frequency conversion, which are experimentally verified. This strategy takes a step further toward the freewheeling sound manipulation at acoustic frequency domain, and may have far-researching impacts in various acoustic communications, signal processing, and contactless detection.Nanostructures made entirely of DNAs display great potential as chemotherapeutic drug carriers but so far cannot achieve sufficient clinic therapy outcomes due to off-target toxicity. In this contribution, an aptamer-embedded hierarchical DNA nanocluster (Apt-eNC) is constructed as an intelligent carrier for cancer-targeted drug delivery. Specifically, Apt-eNC is designed to have a built-in reserve pool in the interior cavity from which aptamers may move outward to function as needed. When surface aptamers are degraded, ones in reserve pool can move outward to offer the compensation, thereby magically preserving tumor-targeting performance in vivo. Even if withstanding extensive aptamer depletion, Apt-eNC displays a 115-fold enhanced cell targeting compared with traditional counterparts and at least 60-fold improved tumor accumulation. Moreover, one Apt-eNC accommodates 5670 chemotherapeutic agents. As such, when systemically administrated into HeLa tumor-bearing BALB/c nude mouse model, drug-loaded Apt-eNC significantly inhibits tumor growth without systemic toxicity, holding great promise for high precision therapy.Texture regulation of metal-organic frameworks (MOFs) is essential for controlling their electromagnetic wave (EMW) absorption properties. This review systematically summarizes the recent advancements in texture regulation strategies for MOFs, including etching and exchange of central ions, etching and exchange of ligands, chemically induced self-assembly, and MOF-on-MOF heterostructure design. Additionally, the EMW absorption mechanisms in approaches based on structure-function dependencies, including nano-micro topological engineering, defect engineering, interface engineering, and hybrid engineering, are comprehensively explored. Finally, current challenges and future research orientation are proposed. This review aims to provide new perspectives for designing MOF-derived EMW-absorption materials to achieve essential breakthroughs in mechanistic investigations in this promising field.Since the discovery of wireless telegraphy in 1897, wireless communication via electromagnetic (EM) signals has become a standard solution to address increasing demand for information transfer in modern society. With the rapid growth of EM wave manipulation technique, programmable metasurface (PM) has emerged as a new type of wireless transmitter by directly modulating digital information without complex microwave components, thus providing an alternative to simplify the conventional wireless communication system. However, the challenges of improving information security and spectrum utilization still exist. Here, a dual-band metasurface-assisted wireless communication scheme is introduced to provide additional physical channels for the enhancement of information security. AMG510 The information is divided into several parts and transmitted through different physical channels to accomplish information encryption, greatly reducing the possibility of eavesdropping. As the proof of concept, a dual-channel and high-security wireless communication system based on a 1-bit PM is established to simultaneously transmit two different parts of a picture to two receivers. Experiments show that the transmitted picture can be successfully retrieved only if the received signals of different receivers are synthetized as predefined. The proposed scheme provides a new route of employing PM in information encryption and spectrum utilization of wireless communication.Aerogels have been attracting wide attentions in flexible/wearable electronics because of their light weight, excellent flexibility, and electrical conductivity. However, multifunctional aerogel-based flexible/wearable electronics for human physiological/motion monitoring, and energy harvest/supply for mobile electronics, have been seldom reported yet. In this study, a kind of hybrid aerogel (GO/CNT HA) based on graphene oxide (GO) and carboxylated multiwalled carbon nanotubes (CMWCNTs) is prepared which can not only used as piezoresistive sensors for human motion and physiological signal detections, but also as high performance triboelectric nanogenerator (TENG) coupled with both solid-solid and gas-solid contact electrifications (CE). The repeatedly loading-unloading tests with 20 000 cycles exhibit its high and ultrastable piezoresistive sensor performances. Moreover, when the obtained aerogel is used as the electrode of a TENG, high electric output performance is produced due to the synergistic effect of solid-solid, and gas-solid interface CEs (3D electrification solid-solid interface CE between the two solid electrification layers; gas-solid interface CE between the inner surface of GO/CNT HA and the air filled in the aerogel pores). This kind of aerogel promises good applications for human physiological/motion monitoring and energy harvest/supply in flexible/wearable electronics such as piezoresistive sensors and flexible TENG.Nanoneedles can target nucleic acid transfection to primary cells at tissue interfaces with high efficiency and minimal perturbation. The corneal endothelium is an ideal target for nanoneedle-mediated RNA interference therapy aimed at enhancing its proliferative capacity, necessary for tissue regeneration. This work develops a strategy for siRNA nanoninjection to the human corneal endothelium. Nanoneedles can deliver p16-targeting siRNA to primary human corneal endothelial cells in vitro without toxicity. The nanoinjection of siRNA induces p16 silencing and increases cell proliferation, as monitored by ki67 expression. Furthermore, siRNA nanoinjection targeting the human corneal endothelium is nontoxic ex vivo, and silences p16 in transfected cells. These data indicate that nanoinjection can support targeted RNA interference therapy for the treatment of endothelial corneal dysfunction.Utilizing carbon dioxide (CO2 ) as a resource for carbon monoxide (CO) production using renewable energy requires electrochemical reactors with gas diffusion electrodes that maintain a stable and highly reactive gas/liquid/solid interface. Very little is known about the reasons why gas diffusion electrodes suffer from unstable long-term operation. Often, this is associated with flooding of the gas diffusion electrode (GDE) within a few hours of operation. A better understanding of parameters influencing the phase behavior at the electrolyte/electrode/gas interface is necessary to increase the durability of GDEs. In this work, a microfluidic structure with multi-scale porosity featuring heterogeneous surface wettability to realistically represent the behavior of conventional GDEs is presented. A gas/liquid/solid phase boundary was established within a conductive, highly porous structure comprising a silver catalyst and Nafion binder. Inoperando visualization of wetting phenomena was performed using confocal laser scanning microscopy (CLSM). Non-reversible wetting, wetting of hierarchically porous structures and electrowetting were observed and analyzed. Fluorescence lifetime imaging microscopy (FLIM) enabled the observation of reactions on the model electrode surface. The presented methodology enables the systematic evaluation of spatio-temporally evolving wetting phenomena as well as species characterization for novel catalyst materials under realistic GDE configurations and process parameters.The highest theoretical capacity and lowest redox potential of lithium metal make lithium-based batteries the "holy grail" of the next-generation batteries. However, the uncontrollable dendrite growth and infinite volume change of lithium seriously hinder the real-world implementation of lithium-based batteries. Herein, a flexible MXene@iodine-doped red phosphorus (MXene@RP) paper with iodine-doped red phosphorous particles evenly distributed on the surface and interlayer of MXene matrix is designed by a simple vapor condensation reduction approach. The MXene@RP paper can be used as an efficient matrix to enable dendrite-free lithium deposition. On the one hand, the iodine doping alleviates the low conductivity shortcoming of red phosphorus, making it facilitate homogeneous lithium nucleation, thus promoting uniform lithium deposition and suppressing dendrite growth. On the other hand, the unique layered structure of conductive MXene paper provides ion transport channels and free spaces for lithium loading, alleviating the volume change induced structural damage. As a result, the MXene@RP paper with preloaded lithium exhibits long-term cycling stability. Particularly, a full cell based on Li-MXene@RP anode can maintain 81.4% of the initial capacity after 600 cycles at 4 C. The MXene@RP-based anode increases the potential applications of MXene and provides a guide for the design of dendrite-free lithium hosts.

Autoři článku: Tobinhouse5248 (Klemmensen Wrenn)