Thuesenpearson6081

Z Iurium Wiki

Current advancements in neurovascular biology relates a mechanoceutics treatment, known as cranial osteopathic manipulation (COM), with Alzheimer's disease (AD). COM could be used as an evidence-based treatment strategy to improve the symptoms of AD if molecular mechanisms, which currently remain unclear, are elucidated. In the present pilot study, using transgenic rats, we have identified COM mediated changes in behavioral and biochemical parameters associated with AD phenotypes. We expect these changes may have functional implications and that might account for improved clinical outcomes of COM treatment. Further investigations on COM will be helpful to establish an adjunct treatment for AD.BACKGROUND Few prospective studies with long duration of follow-up have assessed the relations of body mass index (BMI) and weight change with cognitive function, especially in Asian populations. OBJECTIVE To investigate whether BMI and weight change in midlife are associated with cognitive impairment in old age. FRAX486 METHODS We used data from 14,691 participants in the Singapore Chinese Health Study and computed weight change as the difference between weight reported at baseline (1993-1998) at mean age of 53.0 years and follow-up 1 (1999-2004) at mean age of 58.6 years. Cognitive impairment was determined using education-specific cut-offs of the Singapore Modified Mini-Mental State Examination at follow-up 3 (2014-2016) at mean age of 72.9 years. We used multivariable logistic regression models to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) for the associations. RESULTS Obesity (as defined BMI ≥27.5 kg/m2) was associated with a higher risk of cognitive impairment at baseline (OR 1.33, 95% CI 1.12-1.58) and follow-up 1 (OR 1.30, 95% CI 1.10-1.54) compared to BMI of 18.5-22.9 kg/m2. Underweight (BMI less then 18.5 kg/m2) was not associated with a significant risk either at baseline (OR 0.91, 95% CI 0.73-1.13) or follow-up 1 (OR 1.05, 95% CI 0.85-1.28). Compared to participants with less then 5% weight change, the ORs (95% CIs) of cognitive impairment were 1.20 (1.03-1.41) for those with 5-9.9% weight loss, 1.53 (1.29-1.81) for ≥10% weight loss, 1.00 (0.85-1.17) for 5-9.9% weight gain, and 1.50 (1.28-1.75) for ≥10% weight gain. CONCLUSION Obesity, weight loss, and excessive weight gain at midlife were associated with an increased risk of cognitive impairment at old age.Alzheimer's disease (AD) diagnosis is based on psychological and imaging tests but can also include monitoring cerebrospinal fluid (CSF) biomarkers. However, CSF based-neurochemical approaches are expensive and invasive, limiting their use to well-equipped settings. In contrast, blood-based biomarkers are minimally invasive, cost-effective, and a widely accessible alternative. Blood-derived exosomes have recently emerged as a reliable AD biomarker source, carrying disease-specific cargo. Fourier-transformed infrared (FTIR) spectroscopy meets the criteria for an ideal diagnostic methodology since it is rapid, easy to implement, and has high reproducibility. This metabolome-based technique is useful for diagnosing a broad range of diseases, although to our knowledge, no reports for FTIR spectroscopy applied to exosomes in AD exist. In this ground-breaking pilot study, FTIR spectra of serum and serum-derived exosomes from two independent cohorts were acquired and analyzed using multivariate analysis. The regional UA-cohort includes 9 individuals, clinically diagnosed with AD, mean age of 78.7 years old; and the UMG-cohort comprises 12 individuals, clinically diagnosed with AD (based on molecular and/or imaging data), mean age of 73.2 years old. Unsupervised principal component analysis of FTIR spectra of serum-derived exosomes revealed higher discriminatory value for AD cases when compared to serum as a whole. Consistently, the partial least-squares analysis revealed that serum-derived exosomes present higher correlations than serum. In addition, the second derivative peak area calculation also revealed significant differences among Controls and AD cases. The results obtained suggest that this methodology can discriminate cases from Controls and thus be potential useful to assist in AD clinical diagnosis.Alzheimer's disease (AD) is a neurodegenerative disease characterized by extracellular amyloid-β (Aβ) peptide aggregates, forming amyloid plaques, and intracellular deposits of phosphorylated tau. Neuroinflammation is now considered as the third hallmark of AD. The majority of clinical trials tested pharmacological strategies targeting amyloid, tau, and neuroinflammation, with disappointing results overall. In parallel, innovative strategies exploring other pathways and approaches are being tested. In this article, we focus on the rationale and preliminary preclinical evidence for a novel application to AD of a widely used therapeutic strategy for oncological and benign conditions low-dose radiation therapy (LD-RT). LD-RT has shown to be effective against systemic amyloid deposits, as well as against chronic inflammatory diseases, and could thus be able to modulate amyloid load and neuroinflammation in AD. The anti-amyloid effect could be possibly mediated by the LD-RT action on the β-sheet structure of amyloid fibrils, by breaking H-bonds, and depolymerize glucoaminoglycans which are highly radiation-sensitive molecules associated with amyloid fibrils. The anti-inflammatory effect could be linked to the decrease of leukocytes-endothelial cells interactions and to the stimulation of the release of anti-inflammatory molecules. One preclinical study has observed a dramatic reduction of amyloid plaques 4 weeks post-RT, more important with fractionated protocols at low doses than hypofractionated single dose treatments, associated with modulation of inflammatory and anti-inflammatory cytokines and cognitive improvement. Ongoing Phase I clinical trials will test the ability of LD-RT to hold these promises.Blood-brain barrier (BBB) permeability is a recognized early feature of Alzheimer's disease (AD). In the present study, we examined consequences of increased BBB permeability on the development of AD-related pathology by tracking selected leaked plasma components and their interactions with neurons in vivo and in vitro. Histological sections of cortical regions of postmortem AD brains were immunostained to determine the distribution of amyloid-β1-42 (Aβ42), cathepsin D, IgG, GluR2/3, and alpha7 nicotinic acetylcholine receptor (α7nAChR). Results revealed that chronic IgG binding to pyramidal neurons coincided with internalization of Aβ42, IgG, GluR2/3, and α7nAChR as well as lysosomal compartment expansion in these cells in regions of AD pathology. To test possible mechanistic interrelationships of these phenomena, we exposed differentiated SH-SY5Y neuroblastoma cells to exogenous, soluble Aβ42 peptide and serum from AD and control subjects. The rate and extent of Aβ42 internalization in these cells was enhanced by serum containing neuron-binding IgG autoantibodies.

Autoři článku: Thuesenpearson6081 (Troelsen Pilgaard)