Thranestentoft2955

Z Iurium Wiki

Atmospheric gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere while aerosol ammonium (NH4+) constitutes a majority of the inorganic cation concentration in total PM2.5 mass and plays a vital role in severe haze formation. This study tried to shed some light on sources of gaseous NH3 through integrating the parallel measurements of δ15N values in NH4+ and ambient NH3, NH3 source signature measurement, IsoSource model, and chemistry and transport model (CTM). As a result, predicted initial δ15N (NH3) values ranging from -42.0‰ to -4.9‰ were derived from daily δ15N(NH4+) values of fine particulate NH4+, and δ15N(NH3) values ranging from -26.8‰ to -17.2‰ were obtained from weekday/weekend δ15N(NH3) values, respectively. During summer, non-agricultural sources (e.g. fossil fuel sources, urban waste) contributed 63% to ambient NH3 in urban Beijing, derived from δ15N(NH3) values whereas 64% to ambient NH3, derived from δ15N(NH4+) values. These results suggested that non-agricultural sources were main contributors to gaseous NH3 even during summer and agricultural sources were not likely the main source of gaseous NH3 in urban Beijing. To further reduce the uncertainty of isotope-based source apportionment results, more laboratory and field studies are necessary to refine the δ15N(NH3) source profile of NH3 using validated collection technique as overlapping exist between δ15N(NH3) values in agricultural sources such as livestock breeding waste (-42.5‰ to -29.1‰) and fertilizer application (-51.5‰ to -35.0‰).Smoking cigarettes and drinking coffee are common habits in today's society. However, it is not easy to get up-to-date information on smoking prevalence and caffeine consumption as it is usually obtained from population surveys. To overcome this limitation and complement epidemiological information, we employed wastewater-based epidemiology (WBE) to gain a picture of the consumption of cigarettes and caffeine per day per person in Italy. A nationwide study was conducted by measuring two urinary metabolites of nicotine (cotinine and trans-3'-hydroxycotinine) and a caffeine metabolite (1,7-dimethyluric acid) in untreated wastewater from 16 cities. The spatial profiles of use depended mostly on the specific population habits in each city, not on the geographical area or the population size. The patterns of consumption were stable over the week, except in Milan where the use of both substances decreased on Sundays, probably because there were no commuters. In Milan, the use of nicotine decreased from 2013 to 2015. There was a significant relationship between smoking and consumption of products containing caffeine (mainly coffee), thus in cities where more cigarettes were smoked, more caffeine was drunk. These results are generally in accordance with findings from epidemiological studies, but provide some additional local profiles of use and closely follow changes over the years. This information could be useful for healthcare professionals and policy-makers to monitor progress towards the reduction of prevalence in tobacco use, and set up new health campaigns.The primary objective of this research is to accurately estimate light-duty vehicles' (LDVs') emissions of PM2.5 and PM10 over the course of a year within the property line of an inner-city school located adjacent to a heavily-trafficked interstate highway by measuring platinum group elements (PGEs - Rh, Pd, and Pt) along with 49 other major and trace elements. Amongst PGEs, ambient Pd concentrations were the highest, averaging 11 pg/m3 in PM10 and 4.0 pg/m3 in PM2.5 followed by Pt (3.5 pg/m3 in PM10 and 1.4 pg/m3 in PM2.5), and Rh (1.6 pg/m3 in PM10 and 0.52 pg/m3 in PM2.5). Simultaneous three-component variations in Rh, Pd, and Pt in both PM size classes at this surface site closely matched the composition of (i) a mixed random lot of recycled autocatalysts obtained from numerous LDVs and (ii) PM inside a proximal underwater tunnel open only to light-duty vehicles. Additionally, quantitative estimates of LDV contributions to ambient PM calculated by chemical mass balance modeling (CMB) were strongly correlated with PGE abundances. Therefore, PGEs predominantly originated from gasoline-driven motor vehicles validating them as unique LDV tracers. Further, CMB estimated that vehicles contributed 37% on average (12-67%) to PM10 and 49% on average (25-73%) to PM2.5. Evidence is also presented for a subset of other trace metals; i.e. Cu, As, Mo, Cd, and Sb to also be relatively strong LDV tracers. Results highlight the importance of measuring PGEs in addition to numerous other elements in PM to accurately apportion aerosols emanating from LDVs, which will better isolate public health and environmental impacts associated with the transportation sector.Marine heat waves and extreme high temperature become more frequent and intense in these years, which affected the survival of aquaculture animals. The ridgetail white prawn Exopalaemon carinicauda is an important economic species in eastern China, which has remarkable thermal tolerance. However, there has been little study of its thermal-adaptation mechanisms due to the complex genetic structure and unknown genome. To better understand the molecular mechanisms of E. carinicauda to adapt to the changing temperature, a combination of Illumina-based short reads RNA-seq and single molecule real-time-based full-length transcriptome sequencing was used in this study. In total, 17,212 unigenes from high-quality transcripts of E. carinicauda were generated and 14,663 complete ORFs were detected with an average length of 1980 bp. In addition, the transcriptome profiles of E. carinicauda treated with 34 °C heat stress for 6 and 24 h were analyzed. These differentially expressed genes were primarily enriched in oxidatimal-adaptation mechanism of E. carinicauda.Low-land alluvial gravel aquifers are formed from, and tend to be recharged, by rivers. These interconnected river - groundwater systems can be highly dynamic with groundwater levels following the seasonality of the hydrological regime of the river. The associated groundwater resources are regularly under stress during summer periods when abstractive demand is high and recharge is low. Predicting lead-times for critical groundwater levels allows for a more flexible and adaptive groundwater management. An eigenmodel approach is proposed here as a way of making such predictions, fast and efficiently. The eigenmodel is a mathematical concept that represents the hydraulic function of a groundwater aquifer as a set of conceptual linear reservoirs, arranged in-series. River recharge, land surface recharge, and groundwater abstraction for irrigation are considered as model forcings. The eigenmodel approach is demonstrated on three wells of the unconfined Wairau Aquifer in the Marlborough District of New Zealand, which are used for water resources management. Individual eigenmodels were calibrated to historic data and predictive uncertainty bounds were determined by Markov chain Monte Carlo sampling. Hindcasting of past recession periods showed a low predictive error of the models and a good coverage of the predictive uncertainty bounds. The main advantage of the approach is a 4-orders of magnitude higher computational efficiency compared to a numerical benchmark model. This allows for probabilistic simulation in operational forecasting of groundwater levels. The framework is implemented as a web application for 30-day operational forecasts that comprises automatic data downloads and model input generation, stochastic simulation, uncertainty estimation, visualization, and daily updates on a website.The importance of grass pollen to the global burden of allergic respiratory disease is well established but exposure to subtropical and temperate pollens is difficult to discern. Current monitoring of airborne pollen relies on light microscopy, limiting identification of taxa to family level. This informs seasonal fluctuations in pollen aerobiology but restricts analysis of aerobiological composition. We aimed to test the utility of DNA metabarcoding to identify specific taxa contributing to the aerobiome of environmental air samples, using routine pollen and spore monitoring equipment, as well as assess temporal variation of Poaceae pollen across an entire season. selleck compound Airborne pollen concentrations were determined by light microscopy over two pollen seasons in the subtropical city of Brisbane (27°32'S, 153°00E), Australia. Thirty daily pollen samples were subjected to high throughput sequencing of the plastid rbcL amplicon. Amplicons corresponded to plants observed in the local biogeographical region with up to 3238 different operational taxonomic units (OTU) detected. The aerobiome sequencing data frequently identified pollen to genus levels with significant quantitative differences in aerobiome diversity between the months and seasons detected. Moreover, multiple peaks of Chloridoideae and Panicoideae pollen were evident over the collection period confirming these grasses as the dominant Poaceae pollen source across the season. Targeted high throughput sequencing of routinely collected airborne pollen samples appears to offer utility to track temporal changes in the aerobiome and shifts in pollen exposure. Precise identification of the composition and temporal distributions of airborne pollen is important for tracking biodiversity and for management of allergic respiratory disease.Wet and dry aerosol deposition samples were collected from September 2010 to August 2012 at a remote background site in the Mallorca Isle (Western Mediterranean). Ions and major and trace elements were determined in soluble and insoluble fractions. Temporal variations of chemical components are discussed and interpreted. The overall pattern associated to long-range-transport air masses is studied Dry/Wet deposition ratios, charges and composition depend clearly on the meteorological scenario. E.g. Dry/Wet ratio is 11 when air comes from North Africa, in contrast to a 19 ratio under the mainland Europe influence. Moreover, an innovating source apportionment study was conducted integrating both dry and wet deposition samples. Six sources were revealed, including marine aerosols (32%); two different mineral factors, African dust (15%) and regional dust (12%); two anthropogenic factors, one related to road traffic (8%) and another to regional sources (17%); and a mixed factor having biomass burning emissions and others sources (17%). Temporal variations and influence from long-range-transport air masses are also investigated. Fertilization deposition trends have also been explored, observing nutrients settling, as well as nitrate and sulphate, due to their agricultural interest. An important peak during January-February 2012 is studied in depth. Having in mind the strong impact of African dust on the global deposition budget, the analysis of elemental ratios between key dust components was investigated in order to identify major source areas affecting Western Mediterranean Western Sahara, Algeria-Hoggar Massif and Tunisia-Libya. Differences among these regions are evident. E.g. the impact of industrial emissions is well-detected under outbreaks from Tunisia-Libya, with relatively high content of Ni and Pb.

Autoři článku: Thranestentoft2955 (Hickey McCallum)