Thranebaker5351

Z Iurium Wiki

The emergence of the SARS-CoV-2 virus and subsequent COVID-19 pandemic initiated intense research into the mechanisms of action for this virus. It was quickly noted that COVID-19 presents more seriously in conjunction with other human disease conditions such as hypertension, diabetes, and lung diseases. We conducted a bioinformatics analysis of COVID-19 comorbidity-associated gene sets, identifying genes and pathways shared among the comorbidities, and evaluated current knowledge about these genes and pathways as related to current information about SARS-CoV-2 infection. We performed our analysis using GeneWeaver (GW), Reactome, and several biomedical ontologies to represent and compare common COVID-19 comorbidities. Phenotypic analysis of shared genes revealed significant enrichment for immune system phenotypes and for cardiovascular-related phenotypes, which might point to alleles and phenotypes in mouse models that could be evaluated for clues to COVID-19 severity. Through pathway analysis, we identified enriched pathways shared by comorbidity datasets and datasets associated with SARS-CoV-2 infection.COVID-19 CG is an open resource for tracking SARS-CoV-2 single-nucleotide variations (SNVs) and lineages while filtering by location, date, gene, and mutation of interest. BLU9931 COVID-19 CG provides significant time, labor, and cost-saving utility to diverse projects on SARS-CoV-2 transmission, evolution, emergence, immune interactions, diagnostics, therapeutics, vaccines, and intervention tracking. Here, we describe case studies in which users can interrogate (1) SNVs in the SARS-CoV-2 Spike receptor binding domain (RBD) across different geographic regions to inform the design and testing of therapeutics, (2) SNVs that may impact the sensitivity of commonly used diagnostic primers, and (3) the recent emergence of a dominant lineage harboring an S477N RBD mutation in Australia. To accelerate COVID-19 research and public health efforts, COVID-19 CG will be continually upgraded with new features for users to quickly and reliably pinpoint mutations as the virus evolves throughout the pandemic and in response to therapeutic and public health interventions.Single-cell RNA sequencing studies requiring intracellular protein staining, rare-cell sorting, or pathogen inactivation are severely limited because current high-throughput methods are incompatible with paraformaldehyde treatment, a very common and simple tissue/cell fixation and preservation technique. Here we present FD-seq, a high-throughput method for droplet-based RNA sequencing of paraformaldehyde-fixed, stained and sorted single-cells. We used FD-seq to address two important questions in virology. First, by analyzing a rare population of cells supporting lytic reactivation of the human tumor virus KSHV, we identified TMEM119 as a host factor that mediates reactivation. Second, we studied the transcriptome of lung cells infected with the coronavirus OC43, which causes the common cold and also serves as a safer model pathogen for SARS-CoV-2. We found that pro-inflammatory pathways are primarily upregulated in abortively-infected or uninfected bystander cells, which are exposed to the virus but fail to express high level of viral genes. FD-seq is suitable for characterizing rare cell populations of interest, for studying high-containment biological samples after inactivation, and for integrating intracellular phenotypic with transcriptomic information.Adoptive cell therapy with viral-specific T cells has been successfully used to treat life-threatening viral infections, supporting the application of this approach against COVID-19. We expanded SARS-CoV-2 T-cells from the peripheral blood of COVID-19-recovered donors and non-exposed controls using different culture conditions. We observed that the choice of cytokines modulates the expansion, phenotype and hierarchy of antigenic recognition by SARS-CoV-2 T-cells. Culture with IL-2/4/7 but not other cytokine-driven conditions resulted in >1000 fold expansion in SARS-CoV-2 T-cells with a retained phenotype, function and hierarchy of antigenic recognition when compared to baseline (pre-expansion) samples. Expanded CTLs were directed against structural SARS-CoV-2 proteins, including the receptor-binding domain of Spike. SARS-CoV-2 T-cells could not be efficiently expanded from the peripheral blood of non-exposed controls. Since corticosteroids are used for the management of severe COVID-19, we developed an efficient strategy to inactivate the glucocorticoid receptor gene ( NR3C1 ) in SARS-CoV-2 CTLs using CRISPR-Cas9 gene editing.The COVID-19 pandemic has revealed that infection with SARS-CoV-2 can result in a wide range of clinical outcomes in humans, from asymptomatic or mild disease to severe disease that can require mechanical ventilation. An incomplete understanding of immune correlates of protection represents a major barrier to the design of vaccines and therapeutic approaches to prevent infection or limit disease. This deficit is largely due to the lack of prospectively collected, pre-infection samples from indiviuals that go on to become infected with SARS-CoV-2. Here, we utilized data from a screen of genetically diverse mice from the Collaborative Cross (CC) infected with SARS-CoV to determine whether circulating baseline T cell signatures are associated with a lack of viral control and severe disease upon infection. SARS-CoV infection of CC mice results in a variety of viral load trajectories and disease outcomes. Further, early control of virus in the lung correlates with an increased abundance of activated CD4 and CD8 T identify baseline circulating immune correlates of severe virologic and clinical outcomes upon SARS-CoV infection.

We used a screen of genetically diverse mice from the Collaborative Cross infected with mouse-adapted SARS-CoV in combination with comprehensive pre-infection immunophenotyping to identify baseline circulating immune correlates of severe virologic and clinical outcomes upon SARS-CoV infection.We sought to define the host immune response, a.k.a, the "cytokine storm" that has been implicated in fatal COVID-19 using an AI-based approach. Over 45,000 transcriptomic datasets of viral pandemics were analyzed to extract a 166-gene signature using ACE2 as a 'seed' gene; ACE2 was rationalized because it encodes the receptor that facilitates the entry of SARS-CoV-2 (the virus that causes COVID-19) into host cells. Surprisingly, this 166-gene signature was conserved in all vi ral p andemics, including COVID-19, and a subset of 20-genes classified disease severity, inspiring the nomenclatures ViP and severe-ViP signatures, respectively. The ViP signatures pinpointed a paradoxical phenomenon wherein lung epithelial and myeloid cells mount an IL15 cytokine storm, and epithelial and NK cell senescence and apoptosis determines severity/fatality. Precise therapeutic goals were formulated and subsequently validated in high-dose SARS-CoV-2-challenged hamsters using neutralizing antibodies that abrogate SARS-CoV-2•ACE2 engagement. IL15/IL15RA were elevated in the lungs of patients with fatal disease, and plasma levels of the cytokine tracked with disease severity. Thus, the ViP signatures provide a quantitative and qualitative framework for titrating the immune response in viral pandemics and may serve as a powerful unbiased tool to rapidly assess disease severity and vet candidate drugs.

The host immune response in COVID-19.

The host immune response in COVID-19.Identifying drugs that regulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its symptoms has been a pressing area of investigation during the coronavirus disease 2019 (COVID-19) pandemic. Nonsteroidal anti-inflammatory drugs (NSAIDs), which are frequently used for the relief of pain and inflammation, could modulate both SARS-CoV-2 infection and the host response to the virus. NSAIDs inhibit the enzymes cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), which mediate the production of prostaglandins (PGs). PGE 2 , one of the most abundant PGs, has diverse biological roles in homeostasis and inflammatory responses. Previous studies have shown that NSAID treatment or inhibition of PGE 2 receptor signaling leads to upregulation of angiotensin-converting enzyme 2 (ACE2), the cell entry receptor for SARS-CoV-2, thus raising concerns that NSAIDs could increase susceptibility to infection. COX/PGE 2 signaling has also been shown to regulate the replication of many viruses, but it isitical for the generation of prostaglandins, lipid molecules with diverse roles in maintaining homeostasis as well as regulating the inflammatory response. While COX-1/COX-2 signaling pathways have been shown to affect the replication of many viruses, their effect on SARS-CoV-2 infection remains unknown. We found that SARS-CoV-2 infection induced COX-2 expression in both human cell culture systems and mouse models. However, inhibition of COX-2 activity with NSAIDs did not affect SARS-CoV-2 entry or replication. Our findings suggest that COX-2 signaling may instead regulate the lung inflammation observed in COVID-19 patients, which is an important area for future studies.Epitopes that are conserved among SARS-like coronaviruses are attractive targets for design of cross-reactive vaccines and therapeutics. CR3022 is a SARS-CoV neutralizing antibody to a highly conserved epitope on the receptor binding domain (RBD) on the spike protein that can cross-react with SARS-CoV-2, but with lower affinity. Using x-ray crystallography, mutagenesis, and binding experiments, we illustrate that of four amino acid differences in the CR3022 epitope between SARS-CoV-2 and SARS-CoV, a single mutation P384A fully determines the affinity difference. CR3022 does not neutralize SARS-CoV-2, but the increased affinity to SARS-CoV-2 P384A mutant now enables neutralization with a similar potency to SARS-CoV. We further investigated CR3022 interaction with the SARS-CoV spike protein by negative-stain EM and cryo-EM. Three CR3022 Fabs bind per trimer with the RBD observed in different up-conformations due to considerable flexibility of the RBD. In one of these conformations, quaternary interactions are made by CR3022 to the N-terminal domain (NTD) of an adjacent subunit. Overall, this study provides insights into antigenic variation and potential for cross-neutralizing epitopes on SARS-like viruses.The Coronaviridae are a family of viruses that causes disease in humans ranging from mild respiratory infection to potentially lethal acute respiratory distress syndrome. Finding host factors that are common to multiple coronaviruses could facilitate the development of therapies to combat current and future coronavirus pandemics. Here, we conducted parallel genome-wide CRISPR screens in cells infected by SARS-CoV-2 as well as two seasonally circulating common cold coronaviruses, OC43 and 229E. This approach correctly identified the distinct viral entry factors ACE2 (for SARS-CoV-2), aminopeptidase N (for 229E) and glycosaminoglycans (for OC43). Additionally, we discovered phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis as critical host pathways supporting infection by all three coronaviruses. By contrast, the lysosomal protein TMEM106B appeared unique to SARS-CoV-2 infection. Pharmacological inhibition of phosphatidylinositol phosphate biosynthesis and cholesterol homeostasis reduced replication of all three coronaviruses.

Autoři článku: Thranebaker5351 (Rytter Williamson)