Thorupbriggs0996
Since LPAR3 expression level was significantly higher in A549-CDDP cells than in A549 cells, we investigated the roles of LPA3 in the cell survival to CDDP of A549 cells, using an LPA3 agonist, 1-oleoyl-2-methyl-sn-glycero-3-phosphothionate ((2S)-OMPT). The cell survival rate to CDDP of A549 cells was significantly reduced by (2S)-OMPT treatment. In the presence of (2S)-OMPT, the cell survival rate to CDDP of A549 cells was elevated by LPA3 knockdown. These results suggest that LPA signaling via LPA2 and LPA3 is involved in the regulation of chemoresistance in A549 cells treated with CDDP. PURPOSE Most patients with local prostate cancer recurrence after radiation therapy undergo palliative androgen deprivation therapy because whole-gland salvage treatments have a high risk of severe toxicity. Focal treatment reduces this risk while offering a second opportunity for cure. We report updated outcomes of ultrafocal salvage high-dose-rate brachytherapy (HDR-BT). METHODS AND MATERIALS Prospectively collected data from the first 50 treated patients were analyzed. Disease status was assessed by 3T multiparametric magnetic resonance imaging (MRI), 18F-Choline or 68Ga-prostate-specific membrane antigen positron emission tomography/computed tomography, and systematic or tumor-targeted biopsies. Ultrafocal salvage HDR-BT (1 × 19 Gy) was performed by implanting the clinical target volume (CTV gross tumor volume + 5 mm margin) under fused transrectal ultrasound/MRI guidance. Follow-up included toxicity grading (using Common Terminology Criteria for Adverse Events 4.0), quality of life assessment, and prosta% biochemical disease-free survival at 2.5 years versus 71% for lower-risk patients. CONCLUSIONS At this early stage, MRI-guided ultrafocal HDR-BT seems to be a safe salvage treatment option, with acceptable biochemical control in a well-selected group of patients and potential for effectively postponing androgen deprivation therapy. Epidemiological evidence suggests that the etiology and pathogenesis of rheumatoid arthritis (RA) are closely associated with estrogen metabolism and deficiency. Estrogen protects against articular damage. Estradiol replacement therapy ameliorates local inflammation and knee joint swelling in ovariectomized models of RA. The mechanistic basis for the protective role of 17β-estradiol (17β-E2) is poorly understood. Acid-sensing ion channel 1a (ASIC1a), a sodium-permeable channel, plays a pivotal role in acid-induced articular chondrocyte injury. The aims of this study were to evaluate the role of 17β-E2 in acid-induced chondrocyte injury and to determine the effect of 17β-E2 on the level and activity of ASIC1a protein. Results showed that pretreatment with 17β-E2 attenuated acid-induced damage, suppressed apoptosis, and restored mitochondrial function. Further, 17β-E2 was shown to reduce protein levels of ASIC1a through the ERα receptor, to protect chondrocytes from acid-induced apoptosis, and to induce ASIC1a protein degradation through the autophagy-lysosomal pathway. Taken together, these results show that the use of 17β-E2 may be a novel strategy for the treatment of RA by reducing cartilage destruction through down-regulation of ASIC1a protein levels. Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Therapies for pediatric ALL have improved such that more than 80% of patients survive to 5 years post-therapy, and most survive to adulthood. These ALL patients experience long-term side effects that permanently affect their quality of life, with bone loss and reduced longitudinal growth being the most common skeletal complications. To determine the effects of the chemotherapeutic agents used in ALL induction therapy on bone density and longitudinal growth in mice, we treated juvenile mice with doxorubicin, dexamethasone, vincristine, l-asparaginase, or combination therapy. At adulthood, mice were culled and bones collected and scanned by micro-computed tomography (micro-CT). Mice that received doxorubicin and combination therapy exhibited reduced longitudinal growth and significant reductions in trabecular bone volume, trabecular thickness, and trabecular number, with increased trabecular separation. Mean cortical thickness, cortical area, marrow area, endocortical perimeter, and polar moment of inertia were significantly reduced by doxorubicin and combination therapy. Vincristine treatment significantly decreased trabecular bone volume, trabecular number, and increased trabecular separation but had no effects on cortical bone. Dexamethasone treatment increased trabecular bone separation, cortical marrow area, and cortical bone periosteal perimeter. Mice treated with l-asparaginase did not have any bone phenotypes. In conclusion, these data indicate that the majority of the chemotherapy agents used in induction therapy for pediatric ALL have long-term effects on bone in mice. A single dose of doxorubicin in juvenile mice was sufficient to cause the majority of the bone phenotypes, with combination therapy intensifying these effects. TPA Hematopoietic stem and progenitor cells (HSPCs) govern the daily expansion and turnover of billions of specialized blood cells. Given their clinical utility, much effort has been made toward understanding the dynamics of hematopoietic production from this pool of stem cells. An understanding of hematopoietic stem cell clonal dynamics during blood ontogeny could yield important insights into hematopoietic regulation, especially during aging and repeated exposure to hematopoietic stress-insults that may predispose individuals to the development of hematopoietic disease. Here, we review the current state of research regarding the clonal complexity of the hematopoietic system during embryogenesis, adulthood, and hematologic disease. We have observed an interesting phenomenon in which grinding of freeze-dried monoclonal antibody X (mAb-X) formulation powder resulted to significant protein sub-visible particles (SbVPs) in the reconstituted liquid, which could only be observed by sensitive particle analytical methods such as MFI and DLS. Effects of grinding temperature and the free radical scavengers methionine and 3-carbamoyl-2,2,5,5-tetramethyl-1-pyrrolidin-yloxy free radical (CTPO) on the formation of SbVPs were also evaluated. Free radicals were observed by EPR and the amount of free radicals was correlated to the sample temperature prior to grinding. Formation of SbVPs could be partially inhibited by methionine and CTPO. The amount of SbVPs formed was dependent on the amount of free radicals/sample temperature prior to grinding. At higher temperatures, more free radicals and SbVPs formed. Other than the previously known protein degradation due to high temperature formed during mechanical grinding, we propose an unreported and supplementary mechanism, i.