Thorntontrolle3247
Practical diets for commercial barramundi production rarely contain greater than 10% starch, used mainly as a binding agent during extrusion. Alternative ingredients such as digestible starch have shown some capacity to spare dietary protein catabolism to generate glucose. In the present study, a carnivorous fish species, the Asian seabass (Lates calcarifer) was subjected to two diets with the same digestible energy Protein (P) - with high protein content (no digestible starch); and Starch (S) - with high digestible (pregelatinized) starch content. The effects of a high starch content diet on hepatic glycogen synthesis as well as the muscle and liver metabolome were studied using a complementary approach of 1H and 2H NMR. The hepatosomatic index was lower for fish fed high starch content diet while the concentration of hepatic glycogen was similar between groups. However, increased glycogen synthesis via the direct pathway was observed in the fish fed high starch content diet which is indicative of increased carbohydrate utilization. Multivariate analysis also showed differences between groups in the metabolome of both tissues. Univariate analysis revealed more variations in liver than in muscle of fish fed high starch content diet. Variations in metabolome were generally in agreement with the increase in the glycogen synthesis through direct pathway, however, this metabolic shift seemed to be insufficient to keep the growth rate as ensured by the diet with high protein content. Although liver glycogen does not make up a substantial quantity of total stored dietary energy in carnivorous fish, it is a key regulatory intermediate in dietary energy utilization. Copyright © 2020 Palma, Trenkner, Rito, Tavares, Silva, Glencross, Jones, Wade and Viegas.Introduction Right ventricle (RV) failure is one of the most common symptoms among patients with repaired tetralogy of Fallot (TOF). The current surgery treatment approach including pulmonary valve replacement (PVR) showed mixed post-surgery outcomes. A novel PVR surgical strategy using active contracting bands is proposed to improve the post-PVR outcome. In lieu of testing the risky surgical procedures on real patients, computational simulations (virtual surgery) using biomechanical ventricle models based on patient-specific cardiac magnetic resonance (CMR) data were performed to test the feasibility of the PVR procedures with active contracting bands. Different band combination and insertion options were tested to identify optimal surgery designs. Method Cardiac magnetic resonance data were obtained from one TOF patient (male, age 23) whose informed consent was obtained. A total of 21 finite element models were constructed and solved following our established procedures to investigate the outcomes of the basidered as clinically significant. The passive elastic bands led to the reduction of the RV ejection fractions. The modeling results and surgical strategy need to be further developed and validated by a multi-patient study and animal experiments before clinical trial could become possible. selleck Tissue regeneration techniques are needed to produce materials for the contracting bands. Copyright © 2020 Yu, del Nido, Geva, Yang, Wu, Rathod, Huang, Billiar and Tang.Background Chronic ankle instability (CAI), which is characterized by deficient postural control, could be improved through kinesiology taping (KT). However, the effect of KT on postural control in CAI individuals is controversial. Therefore, this study aimed to investigate the acute effect of KT on postural control through computerized dynamic posturography (CDP) and self-perceived sensation in CAI individuals. Methods Participants with CAI received four different ankle treatments randomly, including KT, athletic taping (AT), sham taping (ST), and no taping (NT). A series of postural stability measurements was performed using CDP subsequently. The measurements included sensory organization test (SOT), unilateral stance (US), limit of stability (LOS), motor control test (MCT), and adaption test (ADT). In addition, self-perceived sensation was measured through visual analog scaling. Repeated measures analysis of variance was conducted to determine whether the difference among KT, AT, ST, and NT was significantthan AT (p = 0.007, 95% CI = 0.349-2.931). Conclusion KT and AT have limited effect to facilitate postural control for CAI individuals during SOT, US, and LOS. However, KT and AT could provide effective support to cope with sudden perturbation in MCT and ADT. Moreover, KT provided excellent perceived stability and comfort, whereas AT provided excellent perceived stability but least comfort. Copyright © 2020 Yin and Wang.Background A noticeable proportion of adolescents with depression do not respond to guideline recommended treatment options. This systematic review and meta-analysis investigated the effectiveness of physical activity interventions as an alternative or complementary treatment for adolescents (12-18 years) with depression. The characteristics of the physical activity treatment that were most effective in reducing symptoms in adolescents with depression and the impact of methodological shortcomings in the existing research were also examined. Methods Medline, PsycINFO, SPORTDiscus, ProQuest, and CENTRAL were searched for eligible records. Effect size estimates were pooled based on the application of a random-effects model. Potential moderation by physical activity characteristics (i.e., intensity, type, context, and time frame) and methodological features (i.e., type of control group and diagnostic tool to identify depression at baseline) was investigated by means of subgroup analyses and meta-regressions. The to confirm the recommendation for physical activity treatments in adolescents with depression. Copyright © 2020 Oberste, Medele, Javelle, Lioba Wunram, Walter, Bloch, Bender, Fricke, Joisten, Walzik, Großheinrich and Zimmer.Cultured cardiomyocytes have been shown to possess significant potential as a model for characterization of mechano-Ca2+, mechano-electric, and mechano-metabolic feedbacks in the heart. However, the majority of cultured cardiomyocytes exhibit impaired electrical, mechanical, biochemical, and metabolic functions. More specifically, the cells do not beat spontaneously (pacemaker cells) or beat at a rate far lower than their physiological counterparts and self-oscillate (atrial and ventricular cells) in culture. Thus, efforts are being invested in ensuring that cultured cardiomyocytes maintain the shape and function of freshly isolated cells. Elimination of contraction during culture has been shown to preserve the mechano-Ca2+, mechano-electric, and mechano-metabolic feedback loops of cultured cells. This review focuses on pacemaker cells, which reside in the sinoatrial node (SAN) and generate regular heartbeat through the initiation of the heart's electrical, metabolic, and biochemical activities. In parallel, it places emphasis on atrial cells, which are responsible for bridging the electrical conductance from the SAN to the ventricle.