Thorntonfarah1563
Here, we discuss this emerging area of therapeutics, covering both controversies and areas of consensus related to the opportunities and perils of psychedelic and psychedelic-inspired therapeutics. We highlight how basic science breakthroughs can guide the discovery and development of psychedelic-inspired medications with the potential for improved efficacy without hallucinogenic or rewarding actions.Cardiovascular diseases (CVDs) make a substantial contribution to the global burden of disease. Prevention strategies have succeeded in reducing the effect of acute CVD events and deaths, but the long-term consequences of cardiovascular risk factors still represent the major cause of disability and chronic illness, suggesting that some pathophysiological mechanisms might not be adequately targeted by current therapies. Many of the underlying causes of CVD have now been recognized to have immune and inflammatory components. selleck chemicals llc However, inflammation and immune activation were mostly regarded as a consequence of target-organ damage. Only more recent findings have indicated that immune dysregulation can be pathogenic for CVD, identifying a need for novel immunomodulatory therapeutic strategies. The nervous system, through an array of afferent and efferent arms of the autonomic nervous system, profoundly affects cardiovascular function. Interestingly, the autonomic nervous system also innervates immune organs, and neuroimmune interactions that are biologically relevant to CVD have been discovered, providing the foundation to target neural reflexes as an immunomodulatory therapeutic strategy. This Review summarizes how the neural regulation of immunity and inflammation participates in the onset and progression of CVD and explores promising opportunities for future therapeutic strategies.Assaying for large numbers of low-frequency mutations requires sequencing at extremely high depth and accuracy. Increasing sequencing depth aids the detection of low-frequency mutations yet limits the number of loci that can be simultaneously probed. Here we report a method for the accurate tracking of thousands of distinct mutations that requires substantially fewer reads per locus than conventional hybrid-capture duplex sequencing. The method, which we named MAESTRO (for minor-allele-enriched sequencing through recognition oligonucleotides), combines massively parallel mutation enrichment with duplex sequencing to track up to 10,000 low-frequency mutations, with up to 100-fold fewer reads per locus. We show that MAESTRO can be used to test for chimaerism by tracking donor-exclusive single-nucleotide polymorphisms in sheared genomic DNA from human cell lines, to validate whole-exome sequencing and whole-genome sequencing for the detection of mutations in breast-tumour samples from 16 patients, and to monitor the patients for minimal residual disease via the analysis of cell-free DNA from liquid biopsies. MAESTRO improves the breadth, depth, accuracy and efficiency of mutation testing by sequencing.Serum biomarkers are often insufficiently sensitive or specific to facilitate cancer screening or diagnostic testing. In ovarian cancer, the few established serum biomarkers are highly specific, yet insufficiently sensitive to detect early-stage disease and to impact the mortality rates of patients with this cancer. Here we show that a 'disease fingerprint' acquired via machine learning from the spectra of near-infrared fluorescence emissions of an array of carbon nanotubes functionalized with quantum defects detects high-grade serous ovarian carcinoma in serum samples from symptomatic individuals with 87% sensitivity at 98% specificity (compared with 84% sensitivity at 98% specificity for the current best clinical screening test, which uses measurements of cancer antigen 125 and transvaginal ultrasonography). We used 269 serum samples to train and validate several machine-learning classifiers for the discrimination of patients with ovarian cancer from those with other diseases and from healthy individuals. The predictive values of the best classifier could not be attained via known protein biomarkers, suggesting that the array of nanotube sensors responds to unidentified serum biomarkers.Linking single-cell genomic or transcriptomic profiles to functional cellular characteristics, in particular time-varying phenotypic changes, could help unravel molecular mechanisms driving the growth of tumour-cell subpopulations. Here we show that a custom-built optical microscope with an ultrawide field of view, fast automated image analysis and a dye activatable by visible light enables the screening and selective photolabelling of cells of interest in large heterogeneous cell populations on the basis of specific functional cellular dynamics, such as fast migration, morphological variation, small-molecule uptake or cell division. Combining such functional single-cell selection with single-cell RNA sequencing allowed us to (1) functionally annotate the transcriptomic profiles of fast-migrating and spindle-shaped MCF10A cells, of fast-migrating MDA-MB-231 cells and of patient-derived head-and-neck squamous carcinoma cells, and (2) identify critical genes and pathways driving aggressive migration and mesenchymal-like morphology in these cells. Functional single-cell selection upstream of single-cell sequencing does not depend on molecular biomarkers, allows for the enrichment of sparse subpopulations of cells, and can facilitate the identification and understanding of the molecular mechanisms underlying functional phenotypes.The reproductive axis is activated by gonadotropin-releasing hormone (GnRH), which stimulates the pituitary gonadotropes to secrete hormones that drive gonadal function and steroidogenesis. Thus repression of this axis, which is conserved across mammals and sexes, can reduce steroid levels and/or prevent reproduction. Steroid-dependent pathologies, including various cancers, are commonly treated with GnRH super-analogs which have long-term side-effects, while humane solutions for controlling reproduction in domestic and wild animal populations are lacking. GnRH-conjugated toxins are undergoing clinical trials for GnRHR-expressing cancer cells, and have been examined for gonadotrope ablation in animals, but showed low and/or transient effects and administration of toxins has many potential complications. Here we exploit GnRH targeting to gonadotropes to deliver DNA encoding an effector that induces gonadotropin gene repressive epigenetic modifications which are perpetuated over time. Several layers of specificity are endowed through targeting to GnRHR-expressing cells and due to local cleavage of the peptide packaging the DNA; the DNA-encoded effector is expressed and directed to the target genes by the DNA binding domain of a highly specific transcription factor. This design has multiple advantages over existing methods of shutting down the reproductive axis, and its modular design should allow adaptation for broad applications.In flowering plants, different lineages have independently transitioned from the ancestral hermaphroditic state into and out of various sexual systems1. Polyploidizations are often associated with this plasticity in sexual systems2,3. Persimmons (the genus Diospyros) have evolved dioecy via lineage-specific palaeoploidizations. More recently, hexaploid D. kaki has established monoecy and also exhibits reversions from male to hermaphrodite flowers in response to natural environmental signals (natural hermaphroditism, NH), or to artificial cytokinin treatment (artificial hermaphroditism, AH). We sought to identify the molecular pathways underlying these polyploid-specific reversions to hermaphroditism. Co-expression network analyses identified regulatory pathways specific to NH or AH transitions. Surprisingly, the two pathways appeared to be antagonistic, with abscisic acid and cytokinin signalling for NH and AH, respectively. Among the genes common to both pathways leading to hermaphroditic flowers, we identified a small-Myb RADIALIS-like gene, named DkRAD, which is specifically activated in hexaploid D. kaki. Consistently, ectopic overexpression of DkRAD in two model plants resulted in hypergrowth of the gynoecium. These results suggest that production of hermaphrodite flowers via polyploidization depends on DkRAD activation, which is not associated with a loss-of-function within the existing sex determination pathway, but rather represents a new path to (or reinvention of) hermaphroditism.The development of technologies for the genetic manipulation of mitochondrial genomes remains a major challenge. Here we report a method for the targeted introduction of mutations into plant mitochondrial DNA (mtDNA) that we refer to as transcription activator-like effector nuclease (TALEN) gene-drive mutagenesis (GDM), or TALEN-GDM. The method combines TALEN-induced site-specific cleavage of the mtDNA with selection for mutations that confer resistance to the TALEN cut. Applying TALEN-GDM to the tobacco mitochondrial nad9 gene, we isolated a large set of mutants carrying single amino acid substitutions in the Nad9 protein. The mutants could be purified to homochondriomy and stably inherited their edited mtDNA in the expected maternal fashion. TALEN-GDM induces both transitions and transversions, and can access most nucleotide positions within the TALEN binding site. Our work provides an efficient method for targeted mitochondrial genome editing that produces genetically stable, homochondriomic and fertile plants with specific point mutations in their mtDNA.The field of single-cell genomics and spatial technologies is rapidly evolving and has already provided unprecedented insights into complex tissues. Major advances have been made in dissecting the cellular composition and spatiotemporal interactions that mediate developmental processes in the fetal kidney. Single-cell technologies have also provided detailed insights into the heterogeneity of cell types within the healthy adult and shed light on the complex cellular mechanisms that contribute to kidney disease. The in-depth characterization of specific cell types associated with acute kidney injury and glomerular diseases has potential for the development of prognostic biomarkers and new therapeutics. Analyses of pathway activity in clear-cell renal cell carcinoma can predict the sensitivity of tumour cells to specific inhibitors. The identification of the cell of origin of renal cell carcinoma and of new cell types within the tumour microenvironment also has implications for the development of targeted therapeutics. Similarly, single-cell sequencing has provided new insights into the mechanisms underlying kidney fibrosis, specifically our understanding of myofibroblast origins and the contribution of cell crosstalk within the fibrotic niche to disease progression. These and future studies will enable the creation of a map to aid our understanding of the cellular processes and interactions in the developing, healthy and diseased kidney.Nuclear pore complexes (NPCs) mediate bidirectional nucleocytoplasmic transport of substances in eukaryotic cells. However, the accurate molecular arrangement of NPCs remains enigmatic owing to their huge size and highly dynamic nature. Here we determined the structure of the asymmetric unit of the inner ring (IR monomer) at 3.73 Å resolution by single-particle cryo-electron microscopy, and created an atomic model of the intact IR consisting of 192 molecules of 8 nucleoporins. In each IR monomer, the Z-shaped Nup188-Nup192 complex in the middle layer is sandwiched by two approximately parallel rhomboidal structures in the inner and outer layers, while Nup188, Nup192 and Nic96 link all subunits to constitute a relatively stable IR monomer. In contrast, the intact IR is assembled by loose and instable interactions between IR monomers. These structures, together with previously reported structural information of IR, reveal two distinct interaction modes between IR monomers and extensive flexible connections in IR assembly, providing a structural basis for the stability and malleability of IR.