Thorhaugebrink1794
A subgroup analysis demonstrated that SDD resulted in a significant reduction in AL rates compared to broad-spectrum OABs (RR = 0.52, 95% CI 0.30 to 0.91), I
= 0.00%).
OABs in addition to MBP reduces SSI and AL rates in patients undergoing elective CRC surgery and, more specifically, SDD appears to be more effective compared to broad-spectrum OABs in reducing AL.
OABs in addition to MBP reduces SSI and AL rates in patients undergoing elective CRC surgery and, more specifically, SDD appears to be more effective compared to broad-spectrum OABs in reducing AL.Dehydroepiandrosterone (DHEA), an adrenal and neurosteroid hormone with strong neuroprotective and immunomodulatory properties, and ligand for all high-affinity neurotrophin tyrosine kinase receptors (Trk), also exerts important effects on hyperalgesia. Its synthetic, 17-spiro-epoxy analogue, BNN27, cannot be converted to estrogen or androgen as DHEA; it is a specific agonist of TrkA, the receptor of pain regulator Nerve Growth Factor (NGF), and it conserves the immunomodulatory properties of DHEA. Our study aimed to evaluate the anti-nociceptive and anti-inflammatory properties of BNN27 during Complete Freund's Adjuvant (CFA)-induced inflammatory hyperalgesia in mice. Hyperalgesia was evaluated using the Hargreaves test. Inflammatory markers such as cytokines, NGF and opioids were measured, additionally to corticosterone and the protein kinase B (AKT) signaling pathway. We showed for the first time that treatment with BNN27 reversed hyperalgesia produced by CFA. The effect of BNN27 involved the inhibition of NGF in the dorsal root ganglia (DRG) and the increased synthesis of opioid peptides and their receptors in the inflamed paw. We also found alterations in the cytokine levels as well as in the phosphorylation of AKT2. Our findings strongly support that BNN27 represents a lead molecule for the development of analgesic and anti-inflammatory compounds with potential therapeutic applications in inflammatory hyperalgesia.
New therapeutic approaches are an essential need for patients suffering from colorectal cancer liver metastases. Curcumin, a well-known plant-derived polyphenol, has been shown to play a role in the modulation of multiple signaling pathways involved in the development and progression of certain cancer cells in vitro. This study aims to assess the anti-tumor effect of curcumin on CC531 colorectal cancer cells, both in vitro and in vivo.
On CC531 cultures, the cell viability and cell migration capacity were analyzed (wound healing test) 24, 48, and 72 h after treatment with curcumin (15, 20, 25, or 30 µM). Additionally, in WAG/RijHsd tumor-bearing rats, the total and individual liver lobe tumor volume was quantified in untreated and curcumin-treated animals (200 mg/kg/day, oral). Furthermore, serum enzyme measurements (GOT, GPT, glucose, bilirubin, etc.) were carried out to assess the possible effects on the liver function.
In vitro studies showed curcumin's greatest effects 48h after application, when all of the tested doses reduced cell proliferation by more than 30%. At 72 h, the highest doses of curcumin (25 and 30 µM) reduced cell viability to less than 50%. The wound healing test also showed that curcumin inhibits migration capacity. In vivo, curcumin slowed down the tumor volume of liver implants by 5.6-fold (7.98 ± 1.45 vs. 1.41 ± 1.33;
> 0.0001).
Curcumin has shown an anti-tumor effect against liver implants from colorectal cancer, both in vitro and in vivo, in this experimental model.
Curcumin has shown an anti-tumor effect against liver implants from colorectal cancer, both in vitro and in vivo, in this experimental model.Biofilm-associated infections are a major cause of impaired wound healing. Despite the broad spectrum of anti-bacterial benefits provided by silver nanoparticles (AgNPs), these materials still cause controversy due to cytotoxicity and a lack of efficacy against mature biofilms. Herein, highly potent ultrasmall AgNPs were combined with a biocompatible hydrogel with integrated synergistic functionalities to facilitate elimination of clinically relevant mature biofilms in-vivo combined with improved wound healing capacity. The delivery platform showed a superior release mechanism, reflected by high biocompatibility, hemocompatibility, and extended antibacterial efficacy. In vivo studies using the S. aureus wound biofilm model showed that the AgNP hydrogel (200 µg/g) was highly effective in eliminating biofilm infection and promoting wound repair compared to the controls, including silver sulfadiazine (Ag SD). Treatment of infected wounds with the AgNP hydrogel resulted in faster wound closure (46% closure compared to 20% for Ag SD) and accelerated wound re-epithelization (60% for AgNP), as well as improved early collagen deposition. The AgNP hydrogel did not show any toxicity to tissue and/or organs. These findings suggest that the developed AgNP hydrogel has the potential to be a safe wound treatment capable of eliminating infection and providing a safe yet effective strategy for the treatment of infected wounds.Radiation-induced lung injury (RILI) is one of the main dose-limiting side effects in patients with thoracic cancer during radiotherapy. No reliable predictors or accurate risk models are currently available in clinical practice. Taurocholic acid nmr Severe radiation pneumonitis (RP) or pulmonary fibrosis (PF) will reduce the quality of life, even when the anti-tumor treatment is effective for patients. Thus, precise prediction and early diagnosis of lung toxicity are critical to overcome this longstanding problem. This review summarizes the primary mechanisms and preclinical animal models of RILI reported in recent decades, and analyzes the most promising biomarkers for the early detection of lung complications. In general, ideal integrated models considering individual genetic susceptibility, clinical background parameters, and biological variations are encouraged to be built up, and more prospective investigations are still required to disclose the molecular mechanisms of RILI as well as to discover valuable intervention strategies.Given the low specificity of the routinely used biomarker prostate-specific antigen, circulating tumor cell (CTC) enumeration seems to be particularly useful in the monitoring of prostate cancer. In this review, we focused on a few aspects of CTC enumeration in prostate malignancies prognostic value in metastatic and non-metastatic tumors, role in the monitoring of treatment outcomes, use as a surrogate marker for survival, and other applications, mostly for research purposes. CTC enumeration, without a doubt, offers an attractive perspective in the management of prostate cancer. However, the vast majority of available data about the role of CTC in this malignancy originate from randomized studies of anticancer agents and do not necessarily translate into real-world clinical practice. Further, most studies on the application of CTC in prostate cancer patients were limited to advanced stages of this malignancy. Meanwhile, the role of CTC in the early stages of prostate cancer, in which some patients may present with occult disseminated disease, is still relatively poorly understood, and should thus be studied extensively. Other obstacles in the widespread application of CTC enumeration in routine clinical practice include considerable discrepancies in the number of cells determined with various commercially available systems.Parasites cause numerous health issues in humans, eventually leading to significant social and economic damage; however, the mechanisms of parasite-mediated pathogenesis are not well understood. Nevertheless, it is clearly evidenced that cancerogenic fluke-induced chronic inflammations and cancer are closely associated with oxidative stress. (1) Methods The Paragonimus heterotremus infection's genotoxic potential was assessed in a rat model of simultaneous pulmonary and hepatic paragonimiasis by the alkaline version of single-cell gel electrophoresis (comet assay). Statistical analysis of comet parameters was based on the non-parametric Mann-Whitney U test. (2) Results A clear and statistically significant increase in DNA damage was detected in the helminth-exposed group versus the control rats and the tissue areas adjacent to the parasite capsule versus remote ones; however, differences in DNA damage patterns between different tissues were not statistically significant. Infection resulted in up to 40% cells with DNA damage and an increased genetic damage index. (3) Conclusions The data obtained contribute to understanding the pathogenesis mechanisms of paragonimiasis, suggesting oxidative stress as the most likely reason for DNA breaks; these findings allow us to consider P. heterotremus as a potentially cancerogenic species, and they are important for the monitoring and treatment of paragonimiasis.Mesenchymal stem cells (MSC) are multipotent cells capable to differentiate into adipogenic, osteogenic, and chondrogenic directions, possessing immunomodulatory activity and a capability to stimulate angiogenesis. A scope of these features and capabilities makes MSC a significant factor of tissue homeostasis and repair. Among factors determining the fate of MSC, a prominent place belongs to autophagy, which is activated under different conditions including cell starvation, inflammation, oxidative stress, and some others. In addition to supporting cell homeostasis by elimination of protein aggregates, and non-functional and damaged proteins, autophagy is a necessary factor of change in cell phenotype on the process of cell differentiation. In present review, some mechanisms providing participation of autophagy in cell differentiation are discussed.Light-induced retinal damage (LD) is characterized by the accumulation of reactive oxygen species leading to oxidative stress and photoreceptor cell death. The use of natural antioxidants has emerged as promising approach for the prevention of LD. Among them, lutein and cyanidin-3-glucoside (C3G) have been shown to be particularly effective due to their antioxidant and anti-inflammatory activity. However, less is known about the possible efficacy of combining them in a multicomponent mixture. In a rat model of LD, Western blot analysis, immunohistochemistry and electroretinography were used to demonstrate that lutein and C3G in combination or in a multicomponent mixture can prevent oxidative stress, inflammation, gliotic and apoptotic responses thus protecting photoreceptor cells from death with higher efficacy than each component alone. Combined efficacy on dysfunctional electroretinogram was also demonstrated by ameliorated rod and cone photoreceptor responses. These findings suggest the rationale to formulate multicomponent blends which may optimize the partnering compounds bioactivity and bioavailability.Human respiratory syncytial virus (HRSV) is the most common cause of severe respiratory infections in infants and young children, often leading to hospitalization. In addition, this virus poses a serious health risk in immunocompromised individuals and the elderly. HRSV is also a major nosocomial hazard in healthcare service units for patients of all ages. Therefore, the development of antiviral treatments against HRSV is a global health priority. In this study, mitoxantrone, a synthetic anthraquinone with previously reported in vitro antiprotozoal and antiviral activities, inhibits HRSV replication in vitro, but not in vivo in a mice model. These results have implications for preclinical studies of some drug candidates.