Thomsenstephenson8957

Z Iurium Wiki

Arbuscular mycorrhizal fungi (AMF) may affect competitive plant interactions, which are considered a prevalent force in shaping plant communities. MM-102 mw Aiming at understanding the role of AMF in the competition between two pasture species and its dependence on soil nutritional status, a pot experiment with mycorrhizal and non-mycorrhizal Lolium multiflorum and Trifolium subterraneum was conducted, with manipulation of species composition (five levels), and nitrogen (N)- and phosphorus (P)- fertilization (three levels). In the non-mycorrhizal state, interspecific competition did not play a major role. However, in the presence of AMF, Lolium was the strongest competitor, with this species being facilitated by Trifolium. While N-fertilization did not change the competitive balance, P-fertilization gave Lolium, a competitive advantage over Trifolium. The effect of AMF on the competitive outcome may be driven by differential C-P trade benefits, with Lolium modulating carbon investment in the mycorrhizal network and the arbuscule/vesicle ratio at the cost of Trifolium.Grafting typically offers a shortcut to breed tree orchards throughout a multidimensional space of traits. Despite an overwhelming spectrum of rootstock-mediated effects on scion traits observed across several species, the exact nature and mechanisms underlying the rootstock-mediated effects on scion traits in cacao (Theobroma cacao L.) plants often remain overlooked. Therefore, we aimed to explicitly quantify rootstock-mediated genetic contributions in recombinant juvenile cacao plants across target traits, specifically cadmium (Cd) uptake, and its correlation with growth and physiological traits. Content of chloroplast pigments, fluorescence of chlorophyll a, leaf gas exchange, nutrient uptake, and plant biomass were examined across ungrafted saplings and target rootstock × scion combinations in soils with contrasting levels of Cd. This panel considered a total of 320 progenies from open-pollinated half-sib families and reciprocal full-sib progenies (derived from controlled crosses between the reference gensoils without Cd, or 4 months after grafting. These results suggest a pervasive genetic conflict between the rootstock and the scion genotypes, involving the triple rootstock × scion × soil interaction when it refers to Cd and nutrient uptake, early growth, and photosynthetic process in juvenile cacao plants. Overall, deepening on these findings will harness early breeding schemes of cacao rootstock genotypes compatible with commercial clonal scions and adapted to soils enriched with toxic levels of Cd.Although Catalpa bungei is a forest plant with considerable economic and ornamental value in China, its wood and decorative qualities are constrained by insect pests such as the shoot borer Omphisa plagialis (Lepidoptera). Overexpressing insect resistance genes such as crystal genes to develop an insect-resistant variety of C. bungei is an environmental and ecological approach. However, genotype limitations and low regeneration rates of embryogenic calli (EC) inhibit the development of transformation and the insect-resistant gene expression system in C. bungei. Here, we first established embryogenic callus induction and regeneration systems of five genotypes using mature seed and stem segment explants; the highest induction and regeneration rates of EC were 39.89 and 100%, respectively. Next, an efficient and stable Agrobacterium-mediated genetic transformation system was developed from EC and its positive frequency was up to 92.31%. Finally, using the transformation system, 15 and 22 transgenic C. bungei lines that expressed Cry2A and Cry9Aa-like were generated, respectively. These transgenic lines that exhibited significantly higher resistance to O. plagialis in the laboratory and field have great promise for meeting the challenge of future pest management under changing climatic conditions. Additionally, this efficient, fast, and stable transformation system could be a potential tool for gene function analysis and forest tree genetic improvement.The modes of interactions between plants and plant-associated microbiota are manifold, and secondary metabolites often play a central role in plant-microbe interactions. Abiotic and biotic (including both plant pathogens and endophytes) stress can affect the composition and concentration of secondary plant metabolites, and thus have an influence on chemical compounds that make up for the taste and aroma of fruit. While the role of microbiota in growth and health of plants is widely acknowledged, relatively little is known about the possible effect of microorganisms on the quality of fruit of plants they are colonizing. In this work, tomato (Solanum lycopersicum L.) plants of five different cultivars were grown in soil and in hydroponics to investigate the impact of the cultivation method on the flavor of fruit, and to assess whether variations in their chemical composition are attributable to shifts in bacterial microbiota. Ripe fruit were harvested and used for bacterial community analysis and for the analysuit. In contrast, indicator bacterial species in hydroponic-derived tomatoes correlated with aroma compounds with "sweet" and "floral" notes and showed negative correlations with glucose concentrations in fruit. Overall, our results point toward a microbiota-related accumulation of flavor and aroma compounds in tomato fruit, which is strongly dependent on the cultivation substrate and approach.Biodiversity plays multifaceted roles in societal development and ecological sustainability. In agricultural ecosystems, using biodiversity to mitigate plant diseases has received renewed attention in recent years but our knowledge of the best ways of using biodiversity to control plant diseases is still incomplete. In term of in-crop diversification, it is not clear how genetic diversity per se in host populations interacts with identifiable resistance and other functional traits of component genotypes to mitigate disease epidemics and what is the best way of structuring mixture populations. In this study, we created a series of host populations by mixing different numbers of potato varieties showing different late blight resistance levels in different proportions. The amount of naturally occurring late blight disease in the mixture populations was recorded weekly during the potato growing seasons. The percentage of disease reduction (PDR) in the mixture populations was calculated by comparing their observed late blight levels relative to that expected when they were planted in pure stands. We found that PDR in the mixtures increased as the number of varieties and the difference in host resistance (DHR) between the component varieties increased. However, the level of host resistance in the potato varieties had little impact on PDR. In mixtures involving two varieties, the optimum proportion of component varieties for the best PDR depended on their DHR, with an increasing skewness to one of the component varieties as the DHR between the component varieties increased. These results indicate that mixing crop varieties can significantly reduce disease epidemics in the field. To achieve the best disease mitigation, growers should include as many varieties as possible in mixtures or, if only two component mixtures are possible, increase DHR among the component varieties.In plants, a diverse set of pathways regulate the transition to flowering, leading to remarkable developmental flexibility. Although the importance of photoperiod in the regulation of flowering time is well known, increasing evidence suggests the existence of crosstalk among the flowering pathways regulated by photoperiod and metabolic pathways. For example, isoprenoid-derived phytohormones (abscisic acid, gibberellins, brassinosteroids, and cytokinins) play important roles in regulating flowering time. Moreover, emerging evidence reveals that other metabolites, such as chlorophylls and carotenoids, as well as sugar metabolism and sugar accumulation, also affect flowering time. In this review, we summarize recent findings on the roles of isoprenoid-derived metabolites and sugars in the regulation of flowering time and how day length affects these factors.REVEILLE (RVE) genes generally act as core circadian oscillators to regulate multiple developmental events and stress responses in plants. It is of importance to document their roles in crops for utilizing them to improve agronomic traits. Soybean is one of the most important crops worldwide. However, the knowledge regarding the functional roles of RVEs is extremely limited in soybean. In this study, the soybean gene GmMYB133 was shown to be homologous to the RVE8 clade genes of Arabidopsis. GmMYB133 displayed a non-rhythmical but salt-inducible expression pattern. Like AtRVE8, overexpression of GmMYB133 in Arabidopsis led to developmental defects such as short hypocotyl and late flowering. Seven light-responsive or auxin-associated genes including AtPIF4 were transcriptionally depressed by GmMYB133, suggesting that GmMYB133 might negatively regulate plant growth. Noticeably, the overexpression of GmMYB133 in Arabidopsis promoted seed germination and plant growth under salt stress, and the contents of chlorophylls and malondialdehyde (MDA) were also enhanced and decreased, respectively. Consistently, the expressions of four positive regulators responsive to salt tolerance were remarkably elevated by GmMYB133 overexpression, indicating that GmMYB133 might confer salt stress tolerance. Further observation showed that GmMYB133 overexpression perturbed the clock rhythm of AtPRR5, and yeast one-hybrid assay indicated that GmMYB133 could bind to the AtPRR5 promoter. Moreover, the retrieved ChIP-Seq data showed that AtPRR5 could directly target five clients including AtPIF4. Thus, a regulatory module GmMYB133-PRR5-PIF4 was proposed to regulate plant growth and salt stress tolerance. These findings laid a foundation to further address the functional roles of GmMYB133 and its regulatory mechanisms in soybean.As autotrophic organisms, plants capture light energy to convert carbon dioxide into ATP, nicotinamide adenine dinucleotide phosphate (NADPH), and sugars, which are essential for the biosynthesis of building blocks, storage, and growth. At night, metabolism and growth can be sustained by mobilizing carbon (C) reserves. In response to changing environmental conditions, such as light-dark cycles, the small-molecule regulation of enzymatic activities is critical for reprogramming cellular metabolism. We have recently demonstrated that proteogenic dipeptides, protein degradation products, act as metabolic switches at the interface of proteostasis and central metabolism in both plants and yeast. Dipeptides accumulate in response to the environmental changes and act via direct binding and regulation of critical enzymatic activities, enabling C flux distribution. Here, we provide evidence pointing to the involvement of dipeptides in the metabolic rewiring characteristics for the day-night cycle in plants. Specificalions. We were particularly intrigued by the group of 16 dipeptides, which, based on their oscillation under SD conditions and accumulation in raptor1b, can be associated with limited C availability or photoperiod. By mining existing protein-metabolite interaction data, we delineated putative protein interactors for a representative dipeptide Pro-Gln. The obtained list included enzymes of C and amino acid metabolism, which are also linked to the TORC-mediated metabolic network. Based on the obtained results, we speculate that the diurnal accumulation of dipeptides contributes to its metabolic adaptation in response to changes in C availability. We hypothesize that dipeptides would act as alternative respiratory substrates and by directly modulating the activity of the focal enzymes.

Autoři článku: Thomsenstephenson8957 (Britt Wright)