Thomasenlund1734
A number of human biomonitoring (HBM) studies have presented data on exposure to hexavalent chromium [Cr(VI)] and cadmium (Cd), but comparatively few include results on effect biomarkers. The latter are needed to identify associations between exposure and adverse outcomes (AOs) in order to assess public health implications. To support improved derivation of EU regulation and policy making, it is of great importance to identify the most reliable effect biomarkers for these heavy metals that can be used in HBM studies. In the framework of the Human Biomonitoring for Europe (HBM4EU) initiative, our study aim was to identify effect biomarkers linking Cr(VI) and Cd exposure to selected AOs including cancer, immunotoxicity, oxidative stress, and omics/epigenetics. ON-01910 A comprehensive PubMed search identified recent HBM studies, in which effect biomarkers were examined. Validity and applicability of the markers in HBM studies are discussed. The most frequently analysed effect biomarkers regarding Cr(VI) exposure and its on knowledge of mechanistic principles. To this aim, also mechanistic data were collected to provide guidance on the use of more sensitive and specific effect biomarkers. This also led to the identification of knowledge gaps relevant to the direction of future research.Gallium (Ga), indium (In), and thallium (Tl) are emerging soil contaminants. Profile distribution of total content and available form as well as assessing the contamination degree of these elements in highly-weathered soils have not been studied. Consequently, the aim of this study was to determine the distribution of total (HF-digestion) and available (EDTA-extracted form) content of Ga, In, and Tl in eleven soil profiles collected from aged fluvial materials on the Quaternary terraces representing highly-weathered soils (Ultisols and Oxisols) in Taiwan as affected by soil properties. We also assessed the soils contamination degree using indices including enrichment factor (EF), geo-accumulation index (Igeo), and pollution loading index (PLI). The total element content varied from 9460 to 2340 μg kg-1 for Ga, 4.77-37.1 μg kg-1 for In, and from 55.7 to 206 μg kg-1 for Tl. The elements showed different profile distribution in the soils. Soil contamination degree was low in all profiles according to the Igeo and PLI values, but the contamination degree according to the EF was severe for Ga and minor or moderate for In in selected horizons of some profiles. The median content of EDTA-extracted Ga, In, and Tl accounted for 24.0, 8.70, and 5.1% of the total content, respectively. The available Ga and Tl can be predicted by a function of total element and clay using multivariate linear regression analysis. The available In was not able to be predicted by a significant fit of the regression with total In and the studied soil properties, and thus we require more assessment approaches of In availability for the soils in the future.The main content of this work is to investigate the removal of polycyclic aromatic hydrocarbons (PAHs phenanthrene, anthracene, and fluoranthene) from simulated sludge solid phase employing an Fenton/Cl- system under various Cl- contents and pH values. The steady-state concentrations of the hydroxyl, chlorine, and dichloride anion radicals ([·OH]ss, [·Cl]ss, and [Cl2·-]ss) in heterogeneous system were first measured using tert-butanol, nitrobenzene, and benzoic acid. The outcomes exhibited that increasing the Cl- content from 50 to 2000 mg/L (pH = 3.0) or raising the pH from 3.0 to 5.0 (1000 mg/L Cl-) caused [·OH]ss to continuously decrease and [Cl2·-]ss and the concentration of superoxide anions (HO2·/O2·-) to continuously increase. When the pH was 3.0 and the Cl- concentration was 1000 mg/L, [·Cl]ss had a maximum value of 9.27 × 10-14 M. Combining the results of PAH removal, radical quenching, and product analysis, it was found that ·Cl in the Fenton/Cl- system promoted the oxidative degradation of phenanthrene without forming chlorination byproducts. Furthermore, HO2·/O2·- was helpful in removing anthracene and fluoranthene. Under the environment of high Cl- content (≥1000 mg/L), PAHs could be removed more effectively by using HO2·/O2·-. This investigation underpins further study on the regulation of reactive species and the efficient degradation of target organic matter in Fenton/Cl- system, and provides a basis for studying the formation of chlorinated or toxic byproducts in the process of treating textile dyeing sludge by Fenton.The present study reports the quantity, shape, colour and chemical properties of microplastics (MP) and MP-like in whole soft tissues of the mussel Mytilus spp. collected in January and February 2019 from four natural banks in the Portuguese coast. Three sites are located in estuarine areas influenced by anthropogenic pressures and freshwater discharges, and one in the coast far from urbanised areas. An alkaline digestion (KOH) of biological tissues was used and a polymeric identification of 20% of the visually sorted particles was achieved using the Fourier-transform mid-infrared spectroscopy (FT-MIR). MP and MP-like concentrations ranged from 0.54 to 3.0 items g-1 without significant differences among the sites. Particle size varied from 36 to 4439 μm, being fibers the most abundant shape (50%) followed by films (22%) and spherules (18%). FT-MIR revealed that 69% of the analysed particles were plastic, being identified six polymers and two polymeric blends, and 32% were cellulose-based materials. Fibers identified in mussel tissues were mainly composed of cotton and viscose (77%). This study emphasizes the importance of the polymer's spectroscopic identification after microscopic observation to recognise MP.Microplastics (MPs), a growing class of emerging pollutants in the environment, have attracted widespread attention due to their adsorption properties. Recent research on MPs has mainly concentrated on seawater, and little work has been conducted on freshwater. Investigating and predicting the adsorption behavior of organic pollutants by MPs are necessary in freshwater. In this study, the adsorption behavior of 13 organic chemicals by polyethylene (PE) and chlorinated polyethylene (CPE) MPs was determined under freshwater conditions. Results shows the majority of the organic chemicals exhibit no distinctive differences in their adsorption on two MPs. However, the adsorption of polycyclic aromatic hydrocarbons and chlorobenzene on CPE is obviously stronger than that on PE, and the result is a counter for two pesticides. Quantitative structure activity relationship (QSAR) analysis was performed for the prediction of adsorption capacity. A QSAR model with acceptable performance (R2 = 0.8586) was built to predict the adsorptive affinity (expressed as logKd) of organic compounds on the PE MPs via multivariable linear regression (MLR) on forty-nine determined and collected data.