Therkildsenthomassen3944

Z Iurium Wiki

Degradation of meat quality has always been a burning issue in fish preservation. To maintain the quality, a novel combination of chlorogenic acid (CGA) and chitosan (CS) coating was applied to snakehead fish fillets. Fish fillets were soaked into 2% chitosan (2CS), 0.2% CGA in 2% chitosan (0.2CGA/2CS), 0.5% CGA in 2% chitosan (0.5CGA/2CS), or 1.0% CGA in 2% chitosan (1.0CGA/2CS) solution; and then, coated samples were vacuum-packaged and stored at 2 ± 0.5°C. pH values, color values, microbial loads, hardness, sensory qualities, and oxidization of lipids and proteins of stored fish fillets were investigated for 5 months. Antimicrobial activity was found to be nonsignificant (p ≤ .05) among different coated fish fillets, while color, antioxidant, and pH values were significantly (p ≤ .05) different. Lipid oxidation and protein oxidation were found to be inhibited in 2CS-, 0.5CGA/2CS- and 1.0CGA/2CS-coated fish fillet. All CGA/CS coating delayed increase in pH (p ≤ .05) and resulted brown color. However, only CS coating resulted in higher sensory scores (p ≤ .05) and controlled browning. Considering antioxidant properties and other quality parameters, CGA/CS coating might be applied commercially in fish preservation. © 2019 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc.The impact of two different cooking processes (microwave and steaming) on cooked rice quality (i.e., texture), and changes in the bioactive compounds (total phenolic content [TPC] and total anthocyanin content [TAC]) and antioxidant activities (DPPH and FRAP assays) of black and red (nonwaxy) and purple (waxy) pigmented rice were investigated. No significant difference in the firmness between microwave-cooked rice and steam-cooked rice was found, except for cooked purple rice. However, microwave cooking promoted an increase in the cooked rice adhesiveness, which approximately higher 2- ~ 3-fold than that of steam cooking with varying among rice cultivars. Microwave cooking also exhibited significantly higher TPC (1.2- ~ 2.0-fold), TAC (2.0- ~ 3.2-fold), DPPH (1.3- ~ 2.5-fold), and FRAP (1.5- ~ 2.4-fold) than steam cooking for black and purple rice cultivars. There was a strong positive correlation among these bioactive compounds and the antioxidant activities (p  less then  .01). Our study indicated that the TPC, TAC, DPPH, and FRAP of all rice examined were remarkably decreased after cooking, and the extent of the decrease depended on the rice cultivar and cooking method. © 2020 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc.The aims of this study were to investigate the effect of stewing process on the content of taste compounds in stewing beef broth. The amino acids, 5'-nucleotides, and organic acids in stewing beef broth were determined by HPLC. The results showed that the contents of four 5'-nucleotides in raw beef were significantly lower than that in stewed beef broth. The addition of spices, salt, and sucrose was beneficial to promote the release of amino acid in beef broth. The highest contents of umami, sweet amino acid, and total amino acid were 907.67, 2930.11, and 5088.76 μg/g in stewed beef broth with salt addition, and 1085.10, 3367.48, and 5595.20 μg/g with sucrose addition. The contents of those in the stewed beef optimal group (s-b-o) were 7008.53, 34007.67, and 49282.82 μg/g, respectively, which was far higher than that with salt addition and sucrose addition. The content of total amino acid and total organic acid was significantly higher in s-b-o-o than in s-b-o. The proper amount of blend oil was beneficial to the release of flavor substances in stewed beef broth. The EUC value of the stewed beef blank group (s-b-b) was 3.50 g MSG/100 g. The addition of spices could significantly increase the EUC of stewed beef broth. The TAVs of 8 compounds were more than 1 in the sample of s-b-o-o, including Asp, Glu, Pro, Ala, Val, Met, Arg, and tartaric acid. These 8 compounds contribute more to the taste of stewed beef broth. © 2020 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc.Carob liqueur is an alcoholic drink (minimum 15% v/v of ethanol and 100 g/L of sugar) typical for the Mediterranean countries. In the current work, carob macerate produced by maceration of carob pods in hydroalcoholic base at different maceration conditions was characterized for the first time based on its aroma compounds/profile, physicochemical parameters, and chromatic characteristics. The results confirm the migration process of bioactive compounds, aroma compounds, and sugars flowing from the carob pod to the hydroalcoholic base. Changes in ethanol concentration modify the physical properties of the solvent and influence the phenolic and aroma compounds extraction, color, and acidity of the obtained samples. The higher content of phenolic compounds was determinate in the samples obtained in the darkness. The amounts of phenols were in the range of some red fruit liqueurs or walnut liqueurs, and sugars (mostly sucrose) ranging between 96 and 107 g/L. Twenty-six (out of total 94) aroma compounds were detected in all samples, of which 17 esters, 3 alcohols, 4 ketones, and 2 acids. Low molecular weight ethyl esters, ethyl hexanoate, ethyl 2-methyl propanoate, ethyl octanoate, ethyl benzoate, ethyl butanoate, and ethyl cinnamate, were the most abundant. https://www.selleckchem.com/products/rvx-208.html Carob pod maceration in 50% v/v hydroalcoholic base (15 solid to liquid ratio) in darkness at room temperature during 8 weeks can be recommended as optimal maceration conditions for production of the aromatic carob macerate with functional properties. © 2020 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc.This research was conducted to evaluate encapsulated d-limonene perception and release in rock candy. Microcapsules with wall materials of 75/25 of gum Arabic/Maltodextrin by 20% of wall materials) were produced for using in rock candy. To evaluate the flavor release from rock candy by time-intensity method, a model system was developed and time-intensity sensory evaluation was conducted by trained sensory panelists in order to determine the effect of three different matrices (water, water and flavored rock candy, and water with flavored rock candy and citric acid (pH = 3) at three serving temperatures (10, 45, and 75°C) on the perception of d-limonene release. Results showed that release of d-limonene from flavored rock candy with acid citric (pH = 3) at 75°C had the highest perceived sensation whereas the matrix of microcapsule in water at 10°C had the lowest perception. On the other hand, increasing the temperature from 10 to 75°C had significant effects on the release and perception of d-limonene (p  less then  .

Autoři článku: Therkildsenthomassen3944 (Mcfadden Gupta)