Therkelsenwoodward0451

Z Iurium Wiki

Intestinal tissue-resident memory CD8 T cells (Trm) are non-recirculating effector cells ideally positioned to detect and react to microbial infections in the gut mucosa. There is an emerging understanding of Trm cell differentiation and functions, but their implication in inflammatory bowel diseases, such as Crohn's disease (CD), is still unknown. Here, we describe CD8 cells in the human intestine expressing KLRG1 or CD103, two receptors of E-cadherin. While CD103 CD8 T cells are present in high numbers in the mucosa of CD patients and controls, KLRG1 CD8 T cells are increased in inflammatory conditions. Mucosal CD103 CD8 T cells are more responsive to TCR restimulation, but KLRG1 CD8 T cells show increased cytotoxic and proliferative potential. CD103 CD8 T cells originate mostly from KLRG1 negative cells after TCR triggering and TGFβ stimulation. Interestingly, mucosal CD103 CD8 T cells from CD patients display major changes in their transcriptomic landscape compared to controls. They express Th17 related genes including CCL20, IL22, and IL26, which could contribute to the pathogenesis of CD. Overall, these findings suggest that CD103 CD8 T cells in CD induce a tissue-wide alert increasing innate immune responses and recruitment of effector cells such as KLRG1 CD8 T cells.O'nyong-nyong virus (ONNV) is an arthritogenic alphavirus that caused two large epidemics in 1959 and 1996, affecting millions of people in Africa. More recently, sero-surveillance of healthy blood donors conducted in 2019 revealed high rates of unreported ONNV infection in Uganda. Due to similar clinical symptoms with other endemic mosquito-borne pathogens in the region, including chikungunya virus, dengue virus and malaria, ONNV infections are often un- or misdiagnosed. Elucidating the immunopathogenic factors of this re-emerging arbovirus is critical with the expanding geographic distribution of competent vectors. This study reports the establishment of an immune competent C57BL6/J mouse model to mechanistically characterize ONNV infection and assess potential treatment efficacy. This mouse model successfully recapitulated arthralgia and viremia profiles seen in ONNV patients. Furthermore, longitudinal in-vivo PET imaging with [18F]FB-IL-2 (CD25+CD4+ binding probe) and histopathological assessment in this model demonstrated the pathogenic role of CD4+ T cells in driving joint pathology. Concordantly, in vivo CD4+ T cell depletion, or suppression with fingolimod, an FDA-approved immunomodulating drug, abrogated CD4+ T cell-mediated disease. This study demonstrates the importance of this immune competent ONNV model for future studies on factors influencing disease pathogenesis, which could shape the discovery of novel therapeutic strategies for arthritogenic alphaviruses.Clinical immunity to malaria develops after repeated exposure to Plasmodium falciparum parasites. Broadly reactive antibodies against parasite antigens expressed on the surface of infected erythrocytes (variable surface antigens; VSAs) are candidates for anti-malaria therapeutics and vaccines. H-151 in vitro Among the VSAs, several RIFIN, STEVOR, and SURFIN family members have been demonstrated to be targets of naturally acquired immunity against malaria. For example, RIFIN family members are important ligands for opsonization of P. falciparum infected erythrocytes with specific immunoglobulins (IgG) acquiring broad protective reactivity. However, the global repertoire of human anti-VSAs IgG, its variation in children, and the key protective targets remain poorly understood. Here, we report wheat germ cell-free system-based production and serological profiling of a comprehensive library of A-RIFINs, B-RIFINs, STEVORs, and SURFINs derived from the P. falciparum 3D7 parasite strain. We observed that >98% of assayed proteins (n = 265) were immunogenic in malaria-exposed individuals in Uganda. The overall breadth of immune responses was significantly correlated with age but not with clinical malaria outcome among the study volunteers. However, children with high levels of antibodies to four RIFINs (PF3D7_0201000, PF3D7_1254500, PF3D7_1040600, PF3D7_1041100), STEVOR (PF3D7_0732000), and SURFIN 1.2 (PF3D7_0113600) had prospectively reduced the risk of developing febrile malaria, suggesting that the 5 antigens are important targets of protective immunity. Further studies on the significance of repeated exposure to malaria infection and maintenance of such high-level antibodies would contribute to a better understanding of susceptibility and naturally acquired immunity to malaria.Introduction Despite increasing awareness of the negative impact of cold ischemia time (CIT) in liver transplantation, its precise influence in different subgroups of liver transplant recipients has not been analyzed in detail. This study aimed to identify liver transplant recipients with an unfavorable outcome due to prolonged cold ischemia. Methods 40,288 adult liver transplantations, performed between 1998 and 2017 and reported to the Collaborative Transplant Study were analyzed. Results Prolonged CIT significantly reduced graft and patient survival only during the first post-transplant year. On average, each hour added to the cold ischemia was associated with a 3.4% increase in the risk of graft loss (hazard ratio (HR) 1.034, P less then 0.001). The impact of CIT was strongest in patients with hepatitis C-related (HCV) cirrhosis with a 24% higher risk of graft loss already at 8-9 h (HR 1.24, 95% CI 1.05-1.47, P = 0.011) and 64% higher risk at ≥14 h (HR 1.64, 95% CI 1.30-2.09, P less then 0.001). In contrast, patients with hepatocellular cancer (HCC) and alcoholic cirrhosis tolerated longer ischemia times up to less then 10 and less then 12 h, respectively, without significant impact on graft survival (P = 0.47 and 0.42). In HCC patients with model of end-stage liver disease scores (MELD) less then 20, graft survival was not significantly impaired in the cases of CIT up to 13 h. Conclusion The negative influence of CIT on liver transplant outcome depends on the underlying disease, patients with HCV-related cirrhosis being at the highest risk of graft loss due to prolonged cold ischemia. Grafts with longer cold preservation times should preferentially be allocated to recipients with alcoholic cirrhosis and HCC patients with MELD less then 20, in whom the effect of cold ischemia is less pronounced.

Autoři článku: Therkelsenwoodward0451 (Beier Choate)