Tennantmcfarland2040

Z Iurium Wiki

We report the potential of a sulfidized nanoscale zerovalent iron-persulfate (S-nZVI-PS) system for in situ chemical oxidation (ISCO) of groundwater pollutants. The study was conducted using a sand-filled rectangular box with a permeable reactive barrier of S-nZVI as a facsimile of the ISCO system. Synthetic water contaminated with a target pollutant (reactive black-5, RB-5) was continuously passed through the box. The injection of PS led to the complete removal of RB-5 and the system remained reactive for approximately 12 days. This system has a benefit that the oxidation products of S-nZVI (i.e., Fe3O4, Fe2O3, and FeSO4) can further activate PS to retain its reactivity. In a separate trial, this method exploited oxidation, reduction, adsorption and co-precipitation mechanisms that conspired to remove two different groundwater pollutants- arsenite and 1,4-dioxane. These results confirmed the utility of S-nZVI-PS as a mediator of ISCO processes to degrade groundwater pollutants.Problems related to specificity and re-precipitation of metals in sequential chemical extractions can impair their routine use. In order to test the efficiency of a sequential chemical procedure, model compounds composed by soil components commonly found in tropical soils such as goethite, Al-goethite, ferrihydrite, hematite, bauxite, and humic acid were incubated with either Hg(NO3)2 or HgSO4 and submitted to chemical extraction. The procedure aims to assess (i) water soluble Hg; (ii) bioaccessible Hg at pH near human stomach; (iii) Hg associated with organic matter; (iv) reduced Hg; (v) Hg associated with Fe, Al, and Mn oxides; and, (vi) residual Hg. This procedure was also tested via single and sequential extractions using the surface and subsurface samples of two tropical soils, i.e., a Rhodic Acrudox and a Typic Hapludox, with and without lime application. Soil samples were submitted to an adsorption experiment with HgCl2 and a high adsorption percentage was observed. The majority of Hg at both single and sequential procedure was extracted by an acetic acid solution (pH = 2). Liming, soil depth, and soil type were not determinative on Hg extractability. The sequential extraction applied showed a lack specificity of Hg fractions, confirmed by the model components.Information on the occurrence and effects of nanoplastics in ecosystems worldwide currently represent one of the main challenges from the ecotoxicological point of view. This is particularly true for terrestrial environments, in which nanoplastics are released directly by human activities or derive from the fragmentation of larger plastic items incorrectly disposed. Since insects can represent a target for these emerging contaminants in land-based community, the aim of this study was the evaluation of ingestion of 0.5 μm polystyrene nanoplastics and their effects in silkworm (Bombyx mori) larvae, a useful and well-studied insect model. The ingestion of nanoplastics, the possible infiltration in the tissues and organ accumulation were checked by confocal microscopy, while we evaluated the effects due to the administered nanoplastics through a multi-tier approach based on insect development and behaviour assessment, as endpoints at organism level, and the measurements of some biochemical responses associated with the imbalance of the redox status (superoxide dismutase, catalase, glutathione s-transferase, reactive oxygen species evaluation, lipid peroxidation) to investigate the cellular and molecular effects. We observed the presence of microplastics in the intestinal lumen, but also inside the larvae, specifically into the midgut epithelium, the Malpighian tubules and in the haemocytes. The behavioural observations revealed a significant (p less then 0.05) increase of erratic movements and chemotaxis defects, potentially reflecting negative indirect effects on B. 1-Azakenpaullone molecular weight mori survival and fitness, while neither effect on insect development nor redox status imbalance were measured, with the exception of the significant (p less then 0.05) inhibition of superoxide dismutase activity.We used the freshwater insect Hydropsyche sp. to investigate the impact of diets lacking arachidonic acid (ARA) and an environmentally relevant mixture of NSAIDs (Ibuprofen, Ketoprofen, Diclofenac and Naproxen at a nominal concentration of all compounds together 16.75 μg L-1) on their metabolism of ARA and prostaglandins (PGs). The organisms were exposed for 16 days to four different treatments a reference (FF), a diet lacking ARA (O), to NSAIDs in water (FFN) and to the combination of the two factors (ON). Mortality, biomass and bioconcentration of pharmaceuticals were investigated. The ARA and PGs levels in the organisms were monitored by utilising a targeted metabolomics approach. NSAIDs or dietary constraints did not produce significant differences in biomass or mortality of Hydropsyche sp. among treatments. In organisms exposed to NSAIDs, all pharmaceuticals were detected, except for Ketoprofen. Metabolomic approach determined the presence of PGH2, PGE1 and PGD1. Levels of ARA diminished significantly in those organisms in treatment ON. The levels of PGs responded negatively to the absence of ARA in diet PGH2 diminished significantly with respect to the reference in treatment O while PGE1 diminished significantly in treatment ON. Regarding the effects of NSAIDs on ARA metabolism, our results suggest that it was sensitive to NSAIDs, but effects were weak and did not imply a general decrease in the PGs. We confirmed that ARA was the main substrate for the synthesis of PGs in Hydropsyche sp, their absence or poor levels of ARA in diet, produced changes in the PG levels.Our previous studies have profiled lysine acetylation and succinylation modifications in Aeromonas hydrophila protein and have found that CobB may be involved in lysine deacylation; however, its effects on bacterial biological function are still unknown. In this study, a data-independent acquisition (DIA)-based proteomics method was used to compare the protein abundance between cob-deleted mutants and wild-type strains. Of the total 2385 identified proteins, 385 were found to have increased abundance, while only 46 showed decreased abundance. Data analysis revealed that many proteins in six metabolic pathways, ribosome, the bacterial secretion system, protein export, RNA degradation, beta-Lactam resistance and oxidative phosphorylation, were affected by the deletion of cobB. Some proteins, such as outer membrane proteins, the two-component regulatory systems and transcriptional factor, were also regulated by cobB. The following phenotype assays confirmed that the ΔcobB mutant produced more biofilm, migrated farther in soft agar, and was more sensitive to oxidative stress than its WT parent.

Autoři článku: Tennantmcfarland2040 (Haastrup Bartlett)