Taterichard3714
Purpose Chronic thromboembolic pulmonary hypertension is characterized by incomplete thrombus resolution following acute pulmonary embolism, leading to pulmonary hypertension and right ventricular dysfunction. Conditions such as thrombophilias, dysfibrinogenemias, and inflammatory states have been associated with chronic thromboembolic pulmonary hypertension, but molecular mechanisms underlying this disease are poorly understood. We sought to characterize the molecular and functional features associated with chronic thromboembolic pulmonary hypertension using a multifaceted approach. Methods We utilized functional assays to compare clot lysis times between chronic thromboembolic pulmonary hypertension patients and multiple controls. We then performed immunohistochemical characterization of tissue from chronic thromboembolic pulmonary hypertension, pulmonary arterial hypertension, and healthy controls, and examined RNA expression patterns of cultured lymphocytes and pulmonary arterial specimens. We then confirate distinct molecular patterns present both in peripheral blood and in pathologic specimens of chronic thromboembolic pulmonary hypertension patients suggesting that altered metabolism may play a role in chronic thromboembolic pulmonary hypertension pathogenesis. © The Author(s) 2020.Pulmonary hypertension is a fatal disease of which pulmonary vasculopathy is the main pathological feature resulting in the mean pulmonary arterial pressure higher than 25 mmHg. Moreover, pulmonary hypertension remains a tough problem with unclear molecular mechanisms. There have been dozens of studies about endoplasmic reticulum stress during the onset of pulmonary hypertension in patients, suggesting that endoplasmic reticulum stress may have a critical effect on the pathogenesis of pulmonary hypertension. The review aims to summarize the rationale to elucidate the role of endoplasmic reticulum stress in pulmonary hypertension. Started by reviewing the mechanisms responsible for the unfolded protein response following endoplasmic reticulum stress, the potential link between endoplasmic reticulum stress and pulmonary hypertension were introduced, and the contributions of endoplasmic reticulum stress to different vascular cells, mitochondria, and inflammation were described, and finally the potential therapies of attenuating endoplasmic reticulum stress for pulmonary hypertension were discussed. © The Author(s) 2020.Pulmonary arterial hypertension (PAH) is a progressive fatal disease with no cure. Inhibition of integrin-linked kinase (ILK) reverses experimental pulmonary hypertension (PH) in male mice, but its effect on severe experimental PH in either male or female animals is unknown. We examined effects of ILK inhibitor Cpd22 on rats with SU5416/hypoxia-induced PH; treatment was performed at six to eight weeks after PH initiation. Five weeks after PH initiation, male and female rats developed similar levels of PH. Eight weeks after PH induction, vehicle-treated male rats had more severe PH than females. Cpd22-treated males, but not females, showed complete suppression of phospho-Akt in small pulmonary arteries (PAs), significantly lower PA medial thickness and percentage of fully occluded arteries, decreased systolic right ventricle (RV) pressure, PA pressure, RV hypertrophy, RV end-diastolic pressure, and improved RV contractility index compared to vehicle-treated group. Cpd22 suppressed proliferation of human male and female PAH pulmonary artery vascular smooth muscle cell (PAVSMC). 17β-estradiol had no effect as a single agent but significantly attenuated Cpd22-dependent inhibition of proliferation in female, but not male, PAH PAVSMC. Taken together, these data demonstrate that male rats develop more severe PH than females but respond better to Cpd22 treatment by reducing pulmonary vascular remodeling, PH, and RV hypertrophy and improving RV functional outcomes. 17β-estradiol diminishes anti-proliferative effect of Cpd22 in female, but not male, human PAH PAVSMC. These findings suggest potential attractiveness of ILK inhibition to reduce established PH in males and suggest that the combination with estrogen-lowering drugs could be considered to maximize anti-proliferative and anti-remodeling effects of ILK inhibitors in females. © The Author(s) 2020.Pulmonary arterial hypertension is a fatal disease associated with pulmonary vascular remodeling and right ventricular hypertrophy. Pre-clinical animal models that reproduce the human pulmonary arterial hypertension process and pharmacological response to available therapies are critical for future drug development. this website The most prevalent animal model reproducing many aspects of angioobliterative forms of pulmonary arterial hypertension is the rat Sugen/hypoxia model in which Sugen, a vascular endothelial growth factor receptor antagonist, primarily causes initiation of endothelial injury and later in the presence of hypoxia promotes proliferation of apoptosis-resistant endothelial cells. We previously demonstrated that exposure of human pulmonary microvascular endothelium to morphine and HIV-proteins results in initial apoptosis followed by increased proliferation. Here, we demonstrate that the double-hit of morphine and Sugen 5416 (Sugen-morphine) in rats leads to the development of pulmonary arterial hypertension with significant medial hypertrophy of pre-acinar pulmonary arteries along with neo-intimal thickening of intra-acinar vessels. In addition, the pulmonary smooth muscle and endothelial cells isolated from Sugen-morphine rats showed hyperproliferation and apoptotic resistance, respectively, in response to serum starvation. Our findings support that the dual hit model of Sugen 5416 and morphine provides another experimental strategy to induce significant pulmonary vascular remodeling and development of severe pulmonary arterial hypertension pathology in rats without exposure to hypoxia. © The Author(s) 2020.While estimates of pulmonary arterial hypertension incidence and prevalence commonly range from 1-3/million and 15-25/million, respectively, clinical experience at our institution suggested much higher rates. We sought to describe the disease burden of pulmonary arterial hypertension in the geographic area served by our Pulmonary Hypertension Clinic and compare it to the REVEAL registry. Our secondary objectives were to document pulmonary arterial hypertension prevalence in minorities underrepresented in REVEAL (Hispanics and Native Americans) and to address the association of pulmonary arterial hypertension with exposure to drugs and moderately increased residential altitude in this population. Retrospective review of pulmonary arterial hypertension clinic patients alive during 2016 identified 154 patients. Hispanic patients made up 35.7% of the cohort, a much greater percentage than REVEAL, p 4000 ft, odds ratio = 26.6 (95% CI 8.5-83.5), p less then .001; however, this was potentially confounded by pulmonary arterial hypertension treatment referral patterns.