Tangpalmer4620

Z Iurium Wiki

More interestingly, ethyl butyrate, fruit-like aroma, could be recovered in content by 1-MCP, ClO2 alone and their combination treatment. Compared with other treatments, the significant different flavor in ClO2 treatment was identified by principle component analysis. In addition, methyl hexanoate and 4-methoxy-2,5-dimethylfuran-3(2H)-one (DMMF) were the major factors that affected the volatile organic compounds (VOCs) of strawberries through the whole storage. Taken together, 1-MCP coupled with ClO2 could be a complex preservative to maintain strawberries quality by regulating the flavor and taste attributes.The deficiency in micronutrients is a public health problem, principally in lower-middle-income countries. Vitamin A (VA) is considered a micronutrient fundamental to the maintenance and development of different tissues in the organism. Therefore, it is an essential micronutrient in the human diet. In these terms, goat milk is the leading food consumed to provide nutritional support in innumerous lower-middle-income countries. Here our work aimed to produce goat cheese studying strategies to promote the retention of VA. Our experiment design also explores the use of the salting process to evaluate the levels of VA retention. The level of VA in goat cheese was determined using LC-MS/MS analysis. Additionally, the redox status of the goat cheese in terms of lipid peroxidation and protein oxidation was determined. The texture analysis was also evaluated to verify if the redox status and salting process influence the texture profile. The results showed that the salting process during goat cheese production improves the retention of VA in goat cheese. Moreover, the salting process also is related to alterations in the status redox of the goat cheese and texture parameters. Therefore, our results show that goat cheese production can be an alternative to produced dairy derivates with recognized concentrations of VA for human nutrition.A mechanical peeler cum juice extractor was designed and developed for simultaneous peeling and juice extraction of kinnow and sweet orange fruits. Based on the designed components and prior optimization of operational parameters for peeling of both the fruits, a functional machine was developed. Major components of the machine include spur gear assembly (Φ 102 mm and Φ 76 mm), two fruit holders (Φ 30 mm), revolving shaft with length 570 mm, clearance of the tool for peeling 25 mm and cutting knife with length 80 mm, respectively. This peeler was operated using a motor, gear assembly and the combination of pulleys. The juice extractor was also fitted with a conical hopper having a flattened base to facilitate the juice extraction of peeled fruits. For performance evaluation, fruit rotation speed was considered as independent parameter and was varied at 220, 260, 280, 300, 360 rpm, whereas peeling time (s), peeling efficiency (%), peel remained on fruit (%) and juice loss (%) were taken as dependent parameters. The machine resulted in best performance at fruit rotational speed of 220 rpm (kinnow) and 260 rpm (sweet orange) with higher peeling efficiency and minimum juice loss. The capacity for peeling and juicing operation was 60-90 kg/h (kinnow) and 50-60 kg/h (sweet orange), respectively. This composite peeling cum juice extractor machine can find its applicability in cottage citrus fruit juice processing industries as well as for the domestic juice sellers.The comparative phytochemicals, antioxidative and antidiabetic activities of Camellia sinensis (black tea) and Aspalathus linearis (rooibos tea) were studied in vitro and ex vivo. Concentrated infusions of the teas showed significant free radical scavenging activities in vitro. They significantly increased the glutathione level, superoxide dismutase and catalase enzyme activities in oxidative hepatic injury, while concomitantly depleting malondialdehyde level. The teas significantly inhibited intestinal glucose absorption and α-amylase activities, and elevated muscle glucose uptake. LCMS phytochemical profiling revealed the presence of hydroxycaffeic acid, l-threonate, caffeine, vanillic acid, n-acetylvaline, and spinacetin 3-glucoside in C. sinensis. While quinolinic acid, coumestrol, phloroglucinol, 8-hydroxyquercetagetin, umbelliferone, and ajoene were identified in A. linearis. NSC 641530 These results portray the antioxidant and antidiabetic potencies of both teas, with A. linearis showed better activity compared to C. sinensis. These teas may thus be used as functional foods in the management of diabetes and other oxidative stress related metabolic disorders.Fresh areca nut is widely favored by consumers in South and Southeast Asia. However, postharvest areca nut perished quickly and was vulnerable to chilling injury (CI) and lignification during traditional cold storage. In order to alleviate this situation, hot water treatment was applied to investigate its effect on CI and lignification of fresh areca nut during cold storage at 13 °C. Areca nuts were submersed in hot water at 45 °C (HW45) and 50 °C (HW50) for short-term 5 min compared to fruit submersed in water at 20 °C (CT), then stored at 13 °C with 90% humidity for 60 days. CI, malondialdehyde (MDA), electrolyte leakage (EL), lignin and total phenolic content, related enzymes including phenylalanine ammonia-lyase (PAL), cinnamyl alcohol dehydrogenase (CAD) and peroxidase activity (POD) were examined. Results indicated that two HW treatments both induced chilling tolerance and delayed lignification of areca nut to varying degrees during cold storage compared with the CT. Among which, HW45 treated-areca nuts had the lowest CI, MDA content and EL while maintaining the highest total phenolic content. Moreover, no significant effects were found between HW45 and HW50 on tissue lignification, but they both effectively blocked lignin accumulation by inhibiting PAL, CAD and POD activities compared with the CT. The present study provided a safe physical method to mitigate CI and delay tissue lignification in cold-stored areca nut.Pithecellobium dulce (Roxb) Benth (P. dulce), known as "guamúchil", is a tree native to the American continent. Various parts of the tree are used in traditional medicine, primarily for treating gastrointestinal disorders. The phenolic compounds and antioxidant capacity of this plant are largely responsible for the beneficial health effects attributed to it. A number of authors have studied the antioxidant capacity and phenolic compounds of the aril, seed, leaf and root of P. dulce using various methodologies, which can differ considerably in variables such as environmental factors, type of drying, temperature, the way the sample is stored, and the use of different solvents in the various extraction methods. link2 Even methods of quantification by HPLC vary tremendously. This paper summarizes the existing research carried out to date on determining the phenolic profile and antioxidant capacity of P. dulce.Phenolic compounds are a group of secondary metabolites produced by plants under stressful conditions. Phenolic compounds play an important role in the prevention and treatment of certain illnesses and are exploited by the food and pharmaceutical industries. Conventional methods are commonly used as models to compare the efficiencies of alternative extraction methods. Among alternative extraction processes, microwave-assisted extraction (MAE), pressurized liquid extraction (PLE), supercritical fluid extraction (SFE) and ultrasonic-assisted extraction (UAE) are the most studied. link3 These methods produce extracts rich in phenolic compounds using moderate temperatures, short extraction times, and solvents generally recognized as safe. The combination of extraction time and temperature plays a critical role in the stability of the compounds. Solvents of higher polarity enhance the extraction of phenolic compounds. The use of the ethanol-water mixture for MAE, PLE, and UAE is recommended. MAE and UAE involve shorter extraction times than do PLE and SFE. SFE requires a low average temperature (40 °C). MAE produces the highest total phenolic content [227.63 mg GAE/g dry basis (d.b.)], followed by PLE (173.65 mg GAE/g d.b.), UAE (92.99 mg GAE/g d.b.) and SFE (37 mg GAE/g d.b.). Extraction yields and recovery rates of the phenolic compounds can be enhanced by combining and integrating extraction methods.Spin off events and impacts can eject boulders from an asteroid surface and rubble pile asteroids can accumulate from debris following a collision between large asteroids. These processes produce a population of gravitational bound objects in orbit that can impact an asteroid surface at low velocity and with a distribution of impact angles. We present laboratory experiments of low velocity spherical projectiles into a fine granular medium, sand. We delineate velocity and impact angles giving ricochets, those giving projectiles that roll-out from the impact crater and those that stop within their impact crater. With high speed camera images and fluorescent markers on the projectiles we track spin and projectile trajectories during impact. We find that the projectile only reaches a rolling without slipping condition well after the marble has reached peak penetration depth. The required friction coefficient during the penetration phase of impact is 4-5 times lower than that of the sand suggesting that the sand is fluidized near the projectile surface during penetration. We find that the critical grazing impact critical angle dividing ricochets from roll-outs, increases with increasing impact velocity. The critical angles for ricochet and for roll-out as a function of velocity can be matched by an empirical model during the rebound phase that balances a lift force against gravity. We estimate constraints on projectile radius, velocity and impact angle that would allow projectiles on asteroids to ricochet or roll away from impact, finally coming to rest distant from their initial impact sites.Recently we showed the reduction and oxidation of six natural 2'-deoxynucleosides in the presence of the ambient oxygen using the very broad potential window of a pyrolytic graphite electrode (PGE). Using the same procedure, 2'-deoxynucleoside analogs (dNs) that are parts of an artificially expanded genetic information system (AEGIS) were analyzed. Seven of the eight tested AEGIS dNs provided specific signals (voltammetric redox peaks). These signals, described here for the first time, will be used in future work to analyze DNA built from expanded genetic alphabets, helping to further develop AEGIS technology and its applications. Comparison of the electrochemical behavior of unnatural dNs with the previously documented behaviors of natural dNs also provides insights into the mechanisms of their respective redox processes.Congenital ichthyoses are a very heterogeneous group of diseases manifested by dry, rough and scaling skin. In all forms of ichthyoses, the skin barrier is damaged to a certain degree. Congenital ichthyoses are caused by various gene mutations. Clinical manifestations of the individual types vary as the patient ages. Currently, the diagnosis of congenital ichthyoses is based on molecular analysis, which also allows a complete genetic counseling and genetic prevention. It is appropriate to refer the patients to specialized medical centers, where the cooperation of a neonatologist, a pediatric dermatologist, a geneticist and other specialists is ensured.

Autoři článku: Tangpalmer4620 (McKenna Gates)