Tandugan3105
Although C. elegans is one of the best-studied model organisms, an estimate of its cell sizes and tissues is missing. Here we used the Virtual Worm that is based on electron microscopy images to calculate a zeroth-order approximation of cell and tissue sizes of C. elegans. We conclude that the intestine is the largest tissue, followed by the hypodermis, gonads, body wall muscles, pharynx, and neurons. Thus, we provide an approximation of tissue volumes of young adult C. elegans.Prostate cancer is a condition commonly associated with men worldwide. Androgen deprivation therapy remains one of the targeted therapies. However, after some years, there is biochemical recurrence and metastatic progression into castration-resistant prostate cancer (CRPC). CRPC cases are treated with second-line androgen deprivation therapy, after which, these CRPCs transdifferentiate to form neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. NEPC arises via a reversible transdifferentiation process, known as neuroendocrine differentiation (NED), which is associated with altered expression of lineage markers such as decreased expression of androgen receptor and increased expression of neuroendocrine lineage markers including enolase 2, chromogranin A and synaptophysin. The etiological factors and molecular basis for NED are poorly understood, contributing to a lack of adequate molecular biomarkers for its diagnosis and therapy. Therefore, there is a need to fully understand the underlying molecular basis for this cancer. Recent studies have shown that microRNAs (miRNAs) play a key epigenetic role in driving therapy-induced NED in prostate cancer. In this review, we briefly describe the role of miRNAs in prostate cancer and CRPCs, discuss some key players in NEPCs and elaborate on miRNA dysregulation as a key epigenetic process that accompanies therapy-induced NED in metastatic CRPC. This understanding will contribute to better clinical management of the disease.Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. PPAR agonist This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.In eukaryotic cells, mitochondria perform the essential function of producing cellular energy in the form of ATP via the oxidative phosphorylation system. This system is composed of 5 multimeric protein complexes of which 13 protein subunits are encoded by the mitochondrial genome Complex I (7 subunits), Complex III (1 subunit),Complex IV (3 subunits), and Complex (2 subunits). Effective mitochondrial translation is necessary to produce the protein subunits encoded by the mitochondrial genome (mtDNA). Defects in mitochondrial translation are known to cause a wide variety of clinical disease in humans with high-energy consuming organs generally most prominently affected. Here, we review several classes of disease resulting from defective mitochondrial translation including disorders with mitochondrial tRNA mutations, mitochondrial aminoacyl-tRNA synthetase disorders, mitochondrial rRNA mutations, and mitochondrial ribosomal protein disorders.Primary coenzyme Q10 (CoQ10) deficiency encompasses a subset of mitochondrial diseases caused by mutations affecting proteins involved in the CoQ10 biosynthetic pathway. One of the most frequent clinical syndromes associated with primary CoQ10 deficiency is the severe infantile multisystemic form, which, until recently, was underdiagnosed. In the last few years, the availability of genetic screening through whole exome sequencing and whole genome sequencing has enabled molecular diagnosis in a growing number of patients with this syndrome and has revealed new disease phenotypes and molecular defects in CoQ10 biosynthetic pathway genes. Early genetic screening can rapidly and non-invasively diagnose primary CoQ10 deficiencies. Early diagnosis is particularly important in cases of CoQ10 deficient steroid-resistant nephrotic syndrome, which frequently improves with treatment. In contrast, the infantile multisystemic forms of CoQ10 deficiency, particularly when manifesting with encephalopathy, present therapeutic challenges, due to poor responses to CoQ10 supplementation. Administration of CoQ10 biosynthetic intermediate compounds is a promising alternative to CoQ10; however, further pre-clinical studies are needed to establish their safety and efficacy, as well as to elucidate the mechanism of actions of the intermediates. Here, we review the molecular defects causes of the multisystemic infantile phenotype of primary CoQ10 deficiency, genotype-phenotype correlations, and recent therapeutic advances.Medical marijuana has a long history of use as an analgesic for chronic pain disorders, including dyspareunia (pain during intercourse), a hallmark of the rare chronic pain disorder vulvodynia. Many women's health topics remain under investigated. Few studies address cannabis's potential to treat vulvodynia symptoms despite their dramatic impact on quality of life. Women who had used cannabis and who reported experiencing vulvodynia symptoms (N = 38) completed an online survey assessing symptoms, expectancies regarding cannabis-associated relief from vulvodynia symptoms, cannabis use, and cannabis-related problems. Generally, women expected cannabis to have moderate to large effects on vulvodynia symptoms (d = .63-1.19). Nevertheless, women expected greater relief for burning/stabbing pain than for itching and pain associated with tampon insertion, as well greater relief for dyspareunia than for pain associated with tampon insertion. Those whose symptoms were worse expected more relief from cannabis treatment.