Sylvestegholm5850
Neuroinflammation and periphery-to-CNS neuroimmune cross-talk in patients with painful knee osteoarthritis (OA) are poorly understood. We utilized proximity extension assay to measure the level of 91 inflammatory proteins in CSF and serum from OA patients and controls. The patients had elevated levels of 48 proteins in CSF indicating neuroinflammation. Ten proteins were correlated between CSF and serum and potentially involved in periphery-to-CNS neuroimmune cross-talk. Seven CSF proteins, all with previously reported neuroprotective effects, were associated with lower pain intensity and milder knee-related symptoms. diABZI STING agonist in vivo Our findings indicate that neuroinflammation in OA could be protective and associated with less severe symptoms.Primary cell culture in vitro suffers from cellular senescence. We hypothesized that expansion on decellularized extracellular matrix (dECM) deposited by simian virus 40 large T antigen (SV40LT) transduced autologous infrapatellar fat pad stem cells (IPFSCs) could rejuvenate high-passage IPFSCs in both proliferation and chondrogenic differentiation. In the study, we found that SV40LT transduced IPFSCs exhibited increased proliferation and adipogenic potential but decreased chondrogenic potential. Expansion on dECMs deposited by passage 5 IPFSCs yielded IPFSCs with dramatically increased proliferation and chondrogenic differentiation capacity; however, this enhanced capacity diminished if IPFSCs were grown on dECM deposited by passage 15 IPFSCs. Interestingly, expansion on dECM deposited by SV40LT transduced IPFSCs yielded IPFSCs with enhanced proliferation and chondrogenic capacity but decreased adipogenic potential, particularly for the dECM group derived from SV40LT transduced passage 15 cells. Our immunofluorescence staining and proteomics data identify matrix components such as basement membrane proteins as top candidates for matrix mediated IPFSC rejuvenation. Both cell proliferation and differentiation were endorsed by transcripts measured by RNASeq during the process. This study provides a promising model for in-depth investigation of the matrix protein influence on surrounding stem cell differentiation.A variety of targeted nanoparticles were developed for the diagnosis and therapy of orthotopic and metastatic bone tumors during the past decade. This critical review will focus on principles and methods in the design of these bone-targeted nanoparticles. Ligands including bisphosphonates, aspartic acid-rich peptides and synthetic polymers were grafted on nanoparticles such as PLGA nanoparticles, liposomes, dendrimers and inorganic nanoparticles for bone targeting. Besides, other ligands such as monoclonal antibodies, peptides and aptamers targeting biomarkers on tumor/bone cells were identified for targeted diagnosis and therapy. Examples of targeted nanoparticles for the early detection of bone metastatic tumors and the ablation of cancer via chemotherapy, photothermal therapy, gene therapy and combination therapy will be intensively reviewed. The development of multifunctional nanoparticles to break down the "vicious" cycle between tumor cell proliferation and bone resorption, and the challenges and perspectives in this area will be discussed.Liver tissue engineering offers a promising strategy for liver failure patients. Since transplantation rejection resulting in vessel thrombosis is regarded as a major hurdle, vascular reconstruction is one of indispensable requirements of whole organ engineering. Here we demonstrated a novel strategy for reconstruction of a vascularized bioengineered human liver (VBHL) using decellularized liver scaffolds in an efficient manner. First we achieved fully functional endothelial coverage of scaffolds by adopting the anti-CD31 aptamer as a potent coating agent for re-endothelialization. Through an ex vivo human blood perfusion that recapitulates the blood coagulation response in humans, we demonstrated significantly reduced platelet aggregation in anti-CD31 aptamer coated scaffolds. We then produced VBHL constructs using liver parenchymal cells and nonparenchymal cells, properly organized into liver-like structures with an aligned vasculature. Interestingly, VBHL constructs displayed prominently enhanced long-term liver-specific functions that are affected by vascular functionality. The VBHL constructs formed perfusable vessel networks in vivo as evidenced by the direct vascular connection between the VBHL constructs and the renal circulation. Furthermore, heterotopic transplantation of VBHL constructs supported liver functions in a rat model of liver fibrosis. Overall, we proposed a new strategy to generate transplantable bioengineered livers characterized by highly functional vascular reconstruction.A lysosomal-targeted near infrared (NIR) fluorescent probe for reactive oxygen species (ROS) was developed with highly sensitive ability. The different responding activity toward H2O2, OH, and HClO were investigated. Meanwhile, the probe has been successfully applied in detecting and imaging reactive oxygen species both in cells and in vivo.In this work, a novel phenoxazine-based fluorescent probe BPO-N3 was developed to detect H2S. The results showed that the probe had high selectivity and sensitivity toward H2S, and its detection mechanism was based the ratio between green and red fluorescence signals; its detection limit was as low as 30 nM. The fluorescent imaging experiments further showed that the probe BPO-N3 could successfully detect endogenous and exogenous H2S in living cells. This probe can be used as a powerful tool for in-depth study of H2S function in various physiological processes.In this work, a painting suspected of counterfeiting was analyzed using the synchrotron-based scanning macro X-ray fluorescence (MA-XRF) technique. The canvas has erasures including a signature erasure; however, some visible numbers indicate that the artwork may be from the 17th century. Through the studies' elemental maps, Cl-K and Ca-K were observed, which allowed us to reconstruct the signature present in the painting. Elemental maps of Ba-K, Ti-K, Fe-K, Zn-K, and Pb-K were also obtained from the painting, which made possible to visualize how the pigments based on these elements were used in the creative composition of the painting. In addition to the signature region, a region of the painting with dimensions of approximately 120 mm × 120 mm was investigated by synchrotron radiation induced MA-XRF, while keeping a high spatial resolution and elemental sensitivity. The measurements were carried out at the D09B micro-XRF beamline of the Brazilian Synchrotron Light Laboratory (LNLS), part of the Brazilian Center of Research in Energy and Materials, in Campinas Brazil.