Sweetsolis8414
Salivary gland hypofunction causes significant morbidity and loss of quality of life for head and neck cancer patients treated with radiotherapy. Preventing hypofunction is an unmet therapeutic need. We used an adeno-associated virus serotype 2 (AAV2) vector expressing the human neurotrophic factor neurturin (CERE-120) to treat murine submandibular glands either pre- or post-irradiation (IR). Treatment with CERE-120 pre-IR, not post-IR, prevented hypofunction. RNA sequencing (RNA-seq) analysis showed reduced gene expression associated with fibrosis and the innate and humoral immune responses. We then used a minipig model with CERE-120 treatment pre-IR and also compared outcomes of the contralateral non-IR gland. Analysis of gene expression, morphology, and immunostaining showed reduced IR-related immune responses and improved secretory mechanisms. CERE-120 prevented IR-induced hypofunction and restored immune homeostasis, and there was a coordinated contralateral gland response to either damage or treatment. CERE-120 gene therapy is a potential treatment for head and neck cancer patients to influence communication among neuronal, immune, and epithelial cells to prevent IR-induced salivary hypofunction and restore immune homeostasis.E2F transcription factors (E2Fs) were found to be related with cell activities and disease progression among a variety of different tumors, including regulating cell division and cell proliferation. In the analysis, it aimed to focus on transcriptional and survival information of E2Fs in gastric cancer (GC) from Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, cBioPortal, Database for Annotation, Visualization and Integrated Discovery (DAVID), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, and Oncomine databases. It was found that the expression of E2F1/2/3/5/7/8 in GC tissues was obviously higher than the normal. Of interest, none of the E2Fs was related with pathological stages. Nevertheless, high expression of E2F2/3/5/7/8 was related with better survival data, except E2F6 regarding shorter first-progression (FP) survival. High expression levels of E2F2/5/7/8 have significant correlations with overall survival (OS) in patients with intestinal and diffuse GC, and this prognostic value is not affected by gender. Oppositely, the lower level of E2F1/4 illustrated superior survival data. Moreover, increased expression of E2F1 in GC tissues might play an important role in the development of GC. Collectively, E2F1 could be a potential therapeutic target for patients with GC. E2F1/2/3/5/7/8 might be original prognostic predictors of GC.Type 2 diabetes (T2D) is one of the most escalating global metabolic diseases, which is highly associated with insulin resistance (IR) and risk of combination with nonalcoholic fatty liver disease (NAFLD). Previous studies suggest that soluble klotho (sKL) could serve as a circulating hormone to mediate energy metabolism, but the detailed mechanism is poorly understood. In this study, we generated T2D models of wild-type (WT), sKL heterozygous (KL+/-), and sKL transgenic (TgKL) mice continuously fed a high-fat diet (HFD) and constructed L02 cell lines that stably overexpress sKL to investigate the effect of sKL on hepatic glucose and lipid metabolism. Surprisingly, we discovered that sKL deficiency resulted in exacerbated diabetic phenotypes and hepatic glucolipid metabolism disorders in HFD-fed KL+/- diabetic mice (KL+/- DM), whereas TgKL diabetic mice (TgKL DM) exhibited ameliorated diabetic phenotypes and decreased IR. Mechanistic studies in vitro and in vivo demonstrated that sKL could inhibit the PI3K/AKT/mTORC1 signaling to upregulate peroxisome proliferator-activated receptor α (PPARα) expression by directly interacting with type 1 insulin-like growth factor receptor (IGF1R) in HFD-fed T2D mice. Thus, sKL could improve hepatic glucolipid homeostasis to ameliorate diabetic phenotypes and lipid accumulation and may function as a potential therapeutic target for the treatment of T2D and reduce the risk of NAFLD.Lentiviral vectors (LVs) are a popular gene delivery tool in cell and gene therapy and they are a primary tool for ex vivo transduction of T cells for expression of chimeric antigen receptor (CAR) in CAR-T cell therapies. Extensive process and product characterization are required in manufacturing virus-based gene vectors to better control batch-to-batch variability. see more However, it has been an ongoing challenge to make quantitative assessments of LV product because current analytical tools often are low throughput and lack robustness and standardization is still required. This paper presents a high-throughput and robust physico-chemical characterization method that directly assesses total LV particles. With simple sample preparation and fast elution time (6.24 min) of the LV peak in 440 mM NaCl (in 20 mM Tris-HCl [pH 7.5]), this ion exchange high-performance liquid chromatography (IEX-HPLC) method is ideal for routine in-process monitoring to facilitate the development of scalable and robust LV manufacturing processes. Furthermore, this HPLC method is suitable for the analysis of all in-process samples, from crude samples such as LV supernatants to final purified products. The linearity range of the standard curve is 3.13 × 108 to 1.0 × 1010 total particles/mL, and both the intra- and inter-assay variabilities are less than 5%.Transforming growth factor β (TGF-β)/Smad3 signaling plays a central role in chronic heart disease. Here, we report that targeting Smad3 with a Smad3 inhibitor SIS3 in an established mouse model of hypertension significantly improved cardiac dysfunctions by preserving the left ventricle (LV) ejection fraction (LVEF) and LV fractional shortening (LVFS), while reducing the LV mass. In addition, SIS3 treatment also halted the progression of myocardial fibrosis by blocking α-smooth muscle actin-positive (α-SMA+) myofibroblasts and collagen matrix accumulation, and inhibited cardiac inflammation by suppressing interleukin (IL)-1β, tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP1), intercellular cell adhesion molecule-1 (ICAM1) expression, and infiltration of CD3+ T cells and F4/80+ macrophages. Interestingly, treatment with SIS3 did not alter levels of high blood pressure, revealing a blood pressure-independent cardioprotective effect of SIS3. Mechanistically, treatment with SIS3 not only directly inactivated TGF-β/Smad3 signaling but also protected cardiac Smad7 from Smurf2-mediated proteasomal ubiquitin degradation.