Sweetsanford6790

Z Iurium Wiki

Photonic hypercrystals (PHCs) are materials combining hyperbolic metamaterials (HMMs) with widely used photonic crystals. We found that finite-sized Type-I HMMs can support unique electromagnetic modes, which could be utilized in two-dimensional photonic crystals to achieve PHCs with twisted bands in the infrared region. Numerical investigation of the PHCs showed that the twisted bands have degenerate points that can support all-angle self-collimation effects. read more The behaviors of light beams change dramatically in such bands, which provides an effective method in controlling light propagation and can be applied as switching. The effect of the filling factor and the permittivity of the dielectric medium of the HMM on the twisted bands were studied. Furthermore, by considering the nonlinear effect of the dielectric layers, an all-optical switch working on the PHC twisted bands is proposed, which has low switching power and high extinction ratio (19.75 dB), superior to conventional HMM switches that require type transformation of metamaterial.We designed a gradient solvent strategy for the reduction of graphene oxide, matching the hydrophilic properties of graphene oxide (GO) and reduced graphene oxide (RGO), respectively. A third solvent was added dropwise to regulate the hydrophilic variation of the continuous gradient system which maintained the whole reduction process without aggregation, and the obtained RGO dispersions could maintain stability for a long time. The separated RGO solid powder can be directly ultrasonically redispersed in N-methyl-pyrrolidone (NMP) with an average particle size as low as 200 nm. Furthermore, RGO with a high C/O ratio of 13.75 was prepared on the basis of the gradient solvent system. Using different structures of dispersants and polymers as representatives, we employed successive solvent rinsing, thermal solvent extraction, and thermal treatment to study adsorption and desorption. It was found that the above measures differed significantly in the removal of surface sorbates. The selected fatty alcohol polyoxyethylene ether (AEO) series achieved a good balance between the system dispersion and surface adsorbate removal. The conductivity was originally 5236 S m-1, and it increased from 9024 to 18,000 S m-1 after thermal treatment at 300 and 500 °C, respectively.The separation of colloidal nanocrystals from their original synthesis medium is an essential process step towards their application, however, the costs on a preparative scale are still a constraint. A new combination of approaches for the purification of hydrophobic Quantum Dots is presented, resulting in an efficient scalable process in regard to time and solvent consumption, using common laboratory equipment and low-cost materials. The procedure is based on a combination of solvent-induced adhesion and solid phase extraction. The platform allows the transition from manual handling towards automation, yielding an overall purification performance similar to one conventional batch precipitation/centrifugation step, which was investigated by thermogravimetry and gas chromatography. The distinct miscibility gaps between surfactants used as nanoparticle capping agents, original and extraction medium are clarified by their phase diagrams, which confirmed the outcome of the flow chemistry process. Furthermore, the solubility behavior of the Quantum Dots is put into context with the Hansen solubility parameters framework to reasonably decide upon appropriate solvent types.Mechanical energy derived from friction is a kind of clean energy which is ubiquitous in nature. In this research, two-dimensional graphite carbon nitride (g-C3N4) is successfully applied to the conversion of nitrogen (N2) fixation through collecting the mechanical energy generated from the friction between a g-C3N4 catalyst and a stirring rod. At the stirring speed of 1000 r/min, the tribocatalytic ammonia radical (NH4+) generation rate of g-C3N4 can achieve 100.56 μmol·L-1·g-1·h-1 using methanol as a positive charge scavenger, which is 3.91 times higher than that without any scavengers. Meanwhile, ammonia is not generated without a catalyst or contact between the g-C3N4 catalyst and the stirring rod. The tribocatalytic effect originates from the friction between the g-C3N4 catalyst and the stirring rod which results in the charges transfer crossing the contact interface, then the positive and negative charges remain on the catalyst and the stirring rod respectively, which can further react with the substance dissolved in the reaction solution to achieve the conversion of N2 to ammonia. The effects of number and stirring speed of the rods on the performance of g-C3N4 tribocatalytic N2 fixation are further investigated. This excellent and efficient tribocatalysis can provide a potential avenue towards harvesting the mechanical energy in a natural environment.The aim of this work is to study the properties of nanostructured (1 - x)ZrO2 - xCeO2 composite ceramics, depending on the content of oxide components, as well as to establish the relationship between the phase composition of ceramics and strength properties. The choice of (1- x)ZrO2 - xCeO2 composite ceramics as objects of study is due to the great prospects for using them as the basis for inert matrix materials for nuclear dispersed fuel, which can replace traditional uranium fuel in high-temperature nuclear reactors. Using X-ray diffraction, it was found that the variation of the oxide components leads to phase transformations of the Monoclinic-ZrO2 → Monoclinic - Zr0.98Ce0.02O2/Tetragonal - ZrO2 → Tetragonal - Zr0.85Ce0.15O2 → Tetragonal - ZrCeO4/Ce0.1Zr0.9O2 type. As a result of mechanical tests, it was found that the formation of tetragonal phases in the structure of ceramics leads to strengthening of ceramics and an increase in crack resistance, which is due not only to an increase in the crystallinity degree, but also to the effect of dislocation hardening associated with a decrease in grain size. It has been established that a change in the phase composition due to phase transformations and displacement of the ZrO2 phase from the ceramic structure with its transformation into the phase of partial replacement of Zr0.85Ce0.15O2 or Ce0.1Zr0.9O2 leads to the strengthening of ceramics by more than 3.5-4 times. The results of resistance to crack formation under single compression showed that the formation of the ZrCeO4 phase in the structure of ceramics leads to an increase in the resistance of ceramics to cracking by more than 2.5 times.In recent years, nanodevices have attracted a large amount of attention due to their low power consumption and fast operation in electronics and photonics, as well as their high sensitivity in sensor applications [...].Graphene-based nanomaterials received attention from scientists due to their unique properties they are highly conductive, mechanically resistant and elastic. These materials can be used in different sectors of society from electronic energy storage in industry to biomedical applications. This study evaluates the influence of graphene nanoplatelets in vitro and in vivo. The toxicological influence of graphene nanoplatelets (GPs) was analyzed by cytotoxic methods, the change of cell proliferation was assessed in real-time, and the effect of GPs on a living organism was evaluated in an animal model using histopathological examination. We analyzed two types of GP administration intratracheal and peroral. We found dose- and time-dependent cytotoxic effects of GPs in vitro; the concentration above 50 μg/mL increased the cytotoxicity significantly. The real-time analysis confirmed these data; the cells exposed to a high concentration of GPs for a longer time period resulted in a decrease in cell index which indicated lower cell viability. Histopathological examination revealed thickened alveolar septa and accumulation of GPs in the endocardium after intratracheal exposure. Peroral administration did not reveal any morphological changes. This study showed the dose- and time-dependent cytotoxic potential of graphene nanoplatelets in in vitro and in vivo models.Reliability of nonvolatile resistive switching devices is the key point for practical applications of next-generation nonvolatile memories. Nowadays, nanostructured organic/inorganic heterojunction composites have gained wide attention due to their application potential in terms of large scalability and low-cost fabrication technique. In this study, the interaction between polyvinyl alcohol (PVA) and two-dimensional material molybdenum disulfide (MoS2) with different mixing ratios was investigated. The result confirms that the optimal ratio of PVAMoS2 is 41, which presents an excellent resistive switching behavior. Moreover, we propose a resistive switching model of Ag/ZnO/PVAMoS2/ITO bilayer structure, which inserts the ZnO as the protective layer between the electrode and the composite film. Compared with the device without ZnO layer structure, the resistive switching performance of Ag/ZnO/PVAMoS2/ITO was improved greatly. Furthermore, a large resistive memory window up to 104 was observed in the Ag/ZnO/PVAMoS2/ITO device, which enhanced at least three orders of magnitude more than the Ag/PVAMoS2/ITO device. The proposed nanostructured Ag/ZnO/PVAMoS2/ITO device has shown great application potential for the nonvolatile multilevel data storage memory.This study presents the corrosion behavior and surface properties of SS304 modified by electrodeposited nickel-cobalt (Ni-Co) alloy coating with cauliflower-shaped micro/nano structures (Ni-Co/SS304) in the simulated PEMFC cathodic environment. The hydrophobicity of the as-prepared Ni-Co alloy coating can be improved simply by low-temperature annealing. The morphology and composition of the Ni-Co/SS304 were analyzed and characterized by SEM, EDS, XRD, and XPS. The polarization, wettability, and ICR tests were respectively conducted to systemically evaluate the performance of Ni-Co/SS304 in the simulated PEMFC cathode environment. As revealed by the results, the Ni-Co/SS304 can maintain its hydrophobicity under hot-water droplets as high as 80 °C and demonstrates higher conductivity than the bare SS304 substrate before and after polarization (0.6 V vs. SCE, 5 h), which is of great significance to improve the surface hydrophobicity and conductivity of bipolar plates.In this study, simplex centroid mixture design was employed to determine the effect of urea on ZnO-CeO. The heterojunction materials were synthesized using a solid-state combustion method, and the physicochemical properties were evaluated using X-ray diffraction, nitrogen adsorption/desorption, and UV-Vis spectroscopy. Photocatalytic activity was determined by a triclosan degradation reaction under UV irradiation. According to the results, the crystal size of zinc oxide decreases in the presence of urea, whereas a reverse effect was observed for cerium oxide. A similar trend was observed for ternary samples, i.e., the higher the proportion of urea, the larger the crystallite cerium size. In brief, urea facilitated the co-existence of crystallites of CeO and ZnO. On the other hand, UV spectra indicate that urea shifts the absorption edge to a longer wavelength. Studies of the photocatalytic activity of TCS degradation show that the increase in the proportion of urea favorably influenced the percentage of mineralization.

Autoři článku: Sweetsanford6790 (Blum Rodriguez)