Svenningsenmcfarland6158

Z Iurium Wiki

The aim of this article is to review the Emerging contaminate sources, detection methods and treatment methods. The purpose of this study is to consider the adsorption as a beneficial treatment of emerging contaminants also advanced and cost effective emerging contaminates treatment methods.We developed a Cu/Cu2O-immobilized filter-type adsorbent for efficient iodide anion removal. A cellulose filter (CF) was used as a support, and its surface was modified using acrylic acid to enhance copper immobilization. The modified filter (CF-AA) exhibited 10x higher copper adsorption than the unmodified filter. Cu/Cu2O was prepared on CF-AA by using a simple hydrothermal method to obtain CF-AA-Cu, and the prepared Cu/Cu2O was characterized with scanning electron microscopy/energy-dispersive spectroscopy, x-ray photoelectron spectroscopy, and thermogravimetric analysis. While CF and Cu2O themselves exhibited limited iodide adsorption performance, CF-AA-Cu exhibited fast adsorption kinetics with a half-life of 60 min as well as a high adsorption capacity of 10.32 mg/g, as obtained using the Langmuir adsorption isotherm model. Moreover, it exhibited high selectivity for iodide when high concentrations of other anions were present. The adsorption mechanism was proved by means of material characterization before and after adsorption. The coexistence of Cu0, Cu+, and Cu2+ in CF-AA-Cu make it effective in broader pH conditions via the redox reaction between Cu0 and Cu2+. Overall, iodide adsorbents in the form of filters with high adsorption capacity, selectivity, and ability over a wide pH range are potentially useful for removing iodide from water.Recently, there has been increasing interest in reducing methylmercury (MeHg) phytoavailability using biochar, although the underlying mechanisms are not fully understood. By combining lab-scale batch incubation with pot and field validations, we demonstrate that biochar-impacted sulfur cycling in soils and MeHg-soil binding play key roles in controlling MeHg phytoavailability. (1) Under anoxic conditions, biochar-associated sulfate and biochar-facilitated microbial sulfate reduction enhanced the production of reduced inorganic sulfur species as acid-volatile sulfide (AVS) in soils by 122%, facilitating MeHg binding with soils and thus reducing MeHg phytoavailability. (2) In contrast, under oxic conditions, the reduced inorganic sulfur was oxidized (resulting in a 68-91% decrease in AVS), which released soil-bound MeHg and increased MeHg phytoavailability. The proposed mechanisms could explain the distinct effects of biochar amendment on MeHg bioaccumulation observed under anoxic (10-88% lower in rice grains) and oxic conditions (48-84% higher in wheat grains). Our results dispute the commonly held assumption that reduced MeHg phytoavailability under biochar amendment can be primarily attributed to MeHg-biochar binding. Therefore, the potential increased risk of MeHg in oxic soils following biochar amendment should be evaluated in more detail.Plastic debris as the main portion of urban litters could be transported via storm runoff to the water resources. learn more In this study the influence of microplastics (MPs) weathering on their Pb2+ and Zn2+ uptake in stormwater was examined. Low-density polyethylene (LDPE) and polyethylene terephthalate (PET) MPs were subjected to weathering through mechanical interaction with a mixture of silt/sand, and in synthetic stormwater. The surface analysis revealed significant physio-chemistry alterations of LDPE MPs due to the silt/sand weathering. However, this weathering mostly resulted in the surface morphology alterations of PET MPs. The kinetics of heavy metals adsorptions onto the new and stormwater weathered LDPE MPs were best described by pseudo 1st and 2nd models, respectively. Despite increasing Pb2+ uptake by weathered PET MPs, Zn2+ uptake by both new and weathered PET MPs was below the detection limit. Both Pb2+ and Zn2+ were released from new and silt/sand weathered LDPE MPs during five days exposure to the synthetic stormwater. This study underscores the critical role of plastic type and weathering conditions on heavy metal transport by MPs from the urban environment to the water resources.In this work, orange emission fluorescent multifunctional carbon dots (O-CDs) were designed for the label-free detection of vitamin B12 (VB12),endogenous/exogenous peroxynitrite (ONOO-) sensing, cell imaging, and fluorescent flexible film preparation. The O-CDs with excitation-independent were prepared using safranine T and ethanol as precursors via one-step hydrothermal process. VB12 was utilized as a quencher to quench the fluorescence of O-CDs due to the internal filtration effect (IFE). Two-segment linear ranges are 1-65 μM and 70-140 μM, and the detection limit was calculated as 0.62 μM. Besides, ONOO- can reduce the fluorescence intensity of O-CDs based on static quenching (SQ). The linear ranges are 0.3-9 μM and 9-48 μM, and the detection limit was 0.06 μM. Moreover, the O-CDs were exploited as a cellular imaging reagent for intracellular VB12 and endogenous/exogenous ONOO- imaging owing to its great biocompatibility, low toxicity and strong photostability. These results indicate that O-CDs have the potential to be used as a sensitive fluorescence probe to rapidly monitor VB12 and endogenous/exogenous ONOO- with high selectivity in living cells. Also, the as-proposed O-CDs can be employed to fabricate O-CDs/PVA composites as fluorescent flexible films. All of the above prove that the O-CDs present great prospect in multiple applications such as biosensing, cellular labeling, biomedical optical imaging, and fluorescent films.Arsenic (As) removal is a huge challenge, since several million people are potentially exposed (>10 μg/L World Health Organization guideline limit) through As contaminated drinking water worldwide. Review attempts to address the present situation of As removal, considering key topics on nano-technological and biological process and current progress and future perspectives of possible mitigation options have been evaluated. Different physical, chemical and biological methods are available to remove As from contaminated water/soil/wastes, where removal efficiency mainly depends on absorbent type, initial adsorbate concentration, speciation and interfering species. Oxidation is an important pretreatment step in As removal, which is generally achieved by several media such as O2/O3, HClO, KMnO4 and H2O2. The Fe-based-nanomaterials (α/β/γ-FeOOH, Fe2O3/Fe3O4-γ-Fe2O3), Fe-based-composite-compounds, activated-Al2O3, HFO, Fe-Al2O3, Fe2O3-impregnated-graphene-aerogel, iron-doped-TiO2, aerogel-based- CeTiO2, and iron-oxide-coated-manganese are effective to remove As from contaminated water. Biological processes (phytoremediation/microbiological) are effective and ecofriendly for As removal from water and/or soil environment. Microorganisms remove As from water, sediments and soil by metabolism, detoxification, oxidation-reduction, bio-adsorption, bio-precipitation, and volatilization processes. Ecofriendly As mitigation options can be achieved by utilizing an alternative As-safe-aquifer, surface-water or rainwater-harvesting. Application of hybrid (biological with chemical and physical process) and Best-Available-Technologies (BAT) can be the most effective As removal strategy to remediate As contaminated environments.Emerging metallic contaminants (EMCs) are of concern due their presence in aquatic ecosystems and the lack of environmental regulations in several countries. This study verifies the presence of EMCs in two neotropical mangrove estuarine ecosystems (Espírito Santo Brazil) by evaluating abiotic and biotic matrices across six trophic levels (plankton, oyster, shrimp, mangrove trees, crabs and fish) and hence interrogates the trophic transfer of these elements and their possible input sources. Using the oyster Crassostrea rhizophorae as a biomonitor, ten EMCs (Bi, Ce, La, Nb, Sn, Ta, Ti, W, Y and Zr) were determined. Bi input was from iron export and pelletizing industries; Ce, La and Y inputs were mainly associated with solid waste from steel production, while Zr, Nb and Ti were related to atmospheric particulate matter emissions. EMCs were detected at various trophic levels, showing biomagnification for most of them in the Santa Cruz estuary but biodilution in Vitória Bay. These contrasting results between the estuaries could be attributed to different pollution degrees, needing further research to be fully understood. This is the first report demonstrating EMCs trophic pathways in situ, constituting an essential baseline for future research and safety regulations involving EMCs in the environment.In this work, a soluble biopolymer was prepared by conjugating the bovine serum albumin (BSA) with transition metal ion (Cu2+). BSA-Cu complex was synthesized and characterized using UV-vis absorption, fluorescence and ATR-FTIR spectroscopies. A colorimetric guaiacol oxidation based method, was used to study the catalytic activity of complex and the results indicated its laccase-like activity. Compared with laccase, BSA-Cu complex showed a higher Km value and a similar Vmax value at the same mass concentration. Also, the ability of the BSA-Cu complex to decolorize malachite green (MG) was tested and the results showed that the complex was able to complete the decolorization process of MG within 30 min. Using gas chromatography/mass spectrometry (GC-MS) the resultant metabolites of MG degradation were analyzed and the toxicity of degradation products was assessed against Escherichia coli and Bacillus subtilis. The results confirmed the formation of less toxic products after degradation of MG by BSA-Cu complex. To predict the decolorization efficiency (DE%) of MG, an artificial neural network (ANN) was designed with five, five and one neurons in the input, hidden and output layers, respectively. The obtained results showed the ability of the designed ANN to predict MG removal successfully.Upgrades of wastewater treatment plant (WWTP) and full-scale application of additional advanced oxidation processes have been proven to be effective in reducing the nutrient emissions to the environment; however, the impacts of WWTP upgrades on the receiving waters with regard to the occurrence and ecological risks of pharmaceuticals are still unclear. In this study, 27 pharmaceuticals with diverse physicochemical properties were monitored in four rivers in Beijing, each of which was heavily impacted by a large-scale WWTP. Three-year sampling campaigns were conducted, covering the periods before and after the WWTP upgrades. The results show that the newly added combined treatment processes (e.g., biological filter, ultrafiltration, ozonation, and NaClO disinfection) reduced the total pharmaceutical concentrations in the effluents by 45-74%. The composition profiles reveal that the upgrades of two studied WWTPs resulted in a significant reduction of pharmaceutical concentrations in the receiving rivers, while little impacts were observed for the other rivers. The risk assessment shows that the acute toxic pressures in the studied rivers were generally low and the WWTP upgrades were conducive to reduce the risks for most of pharmaceuticals. However, erythromycin and ofloxacin still posed high risk, indicating the potential adverse effect of pharmaceuticals on aquatic environment.

Autoři článku: Svenningsenmcfarland6158 (Richard Agerskov)