Summershopper9097

Z Iurium Wiki

Diabetic retinopathy (DR) is the most common eye complication of diabetes and one of the leading causes of blindness and vision impairment. find more Automated and accurate DR grading is of great significance for the timely and effective treatment of fundus diseases. Current clinical methods remain subject to potential time-consumption and high-risk. In this paper, a hierarchically Coarse-to-fine network (CF-DRNet) is proposed as an automatic clinical tool to classify five stages of DR severity grades using convolutional neural networks (CNNs). The CF-DRNet conforms to the hierarchical characteristic of DR grading and effectively improves the classification performance of five-class DR grading, which consists of the following (1) The Coarse Network performs two-class classification including No DR and DR, where the attention gate module highlights the salient lesion features and suppresses irrelevant background information. (2) The Fine Network is proposed to classify four stages of DR severity grades of the grade DR from the Coarse Network including mild, moderate, severe non-proliferative DR (NPDR) and proliferative DR (PDR). Experimental results show that proposed CF-DRNet outperforms some state-of-art methods in the publicly available IDRiD and Kaggle fundus image datasets. These results indicate our method enables an efficient and reliable DR grading diagnosis in clinic.In clinical settings, a lot of medical image datasets suffer from the imbalance problem which hampers the detection of outliers (rare health care events), as most classification methods assume an equal occurrence of classes. In this way, identifying outliers in imbalanced datasets has become a crucial issue. To help address this challenge, one-class classification, which focuses on learning a model using samples from only a single given class, has attracted increasing attention. Previous one-class modeling usually uses feature mapping or feature fitting to enforce the feature learning process. However, these methods are limited for medical images which usually have complex features. In this paper, a novel method is proposed to enable deep learning models to optimally learn single-class-relevant inherent imaging features by leveraging the concept of imaging complexity. We investigate and compare the effects of simple but effective perturbing operations applied to images to capture imaging complexity and to enhance feature learning. Extensive experiments are performed on four clinical datasets to show that the proposed method outperforms four state-of-the-art methods.Automated skin lesion analysis is one of the trending fields that has gained attention among the dermatologists and health care practitioners. Skin lesion restoration is an essential pre-processing step for lesion enhancements for accurate automated analysis and diagnosis by both dermatologists and computer-aided diagnosis tools. Hair occlusion is one of the most popular artifacts in dermatoscopic images. It can negatively impact the skin lesions diagnosis by both dermatologists and automated computer diagnostic tools. Digital hair removal is a non-invasive method for image enhancement for decrease the hair-occlusion artifact in previously captured images. Several hair removal methods were proposed for skin delineation and removal without standardized benchmarking techniques. Manual annotation is one of the main challenges that hinder the validation of these proposed methods on a large number of images or against benchmarking datasets for comparison purposes. In the presented work, we propose a photo-realisti hair synthesis with plausible colours and preserving the integrity of the lesion texture. The proposed method can be used to generate benchmarking datasets for comparing the performance of digital hair removal methods. The code is available online at https//github.com/attiamohammed/realhair.

In this paper, we proposed new methods for feature extraction in machine learning-based classification of atrial fibrillation from ECG signal.

Our proposed methods improved conventional 1-dimensional local binary pattern method in two ways. First, we proposed a dynamic threshold LBP code generation method for use with 1-dimensional signals, enabling the generated LBP codes to have a more detailed representation of the signal morphological pattern. Second, we introduced a variable step value into the LBP code generation algorithm to better cope with a high sampling frequency input signal without a downsampling process. The proposed methods do not employ computationally expensive processes such as filtering, wavelet transform, up/downsampling, or beat detection, and can be implemented using only simple addition, division, and compare operations.

Combining these two approaches, our proposed variable step dynamic threshold local binary pattern method achieved 99.11% sensitivity and 99.29% specificity when used as a feature generation algorithm in support vector machine classification of atrial fibrillation from MIT-BIH Atrial Fibrillation Database dataset. When applied on signals from MIT-BIH Arrhythmia Database, our proposed method achieved similarly good 99.38% sensitivity and 98.97% specificity.

Our proposed methods achieved one of the best results among published works in atrial fibrillation classification using the same dataset while using less computationally expensive calculations, without significant performance degradation when applied on signals from multiple databases with different sampling frequencies.

Our proposed methods achieved one of the best results among published works in atrial fibrillation classification using the same dataset while using less computationally expensive calculations, without significant performance degradation when applied on signals from multiple databases with different sampling frequencies.In a digitally enabled healthcare setting, we posit that an individual's current location is pivotal for supporting many virtual care services-such as tailoring educational content towards an individual's current location, and, hence, current stage in an acute care process; improving activity recognition for supporting self-management in a home-based setting; and guiding individuals with cognitive decline through daily activities in their home. However, unobtrusively estimating an individual's indoor location in real-world care settings is still a challenging problem. Moreover, the needs of location-specific care interventions go beyond absolute coordinates and require the individual's discrete semantic location; i.e., it is the concrete type of an individual's location (e.g., exam vs. waiting room; bathroom vs. kitchen) that will drive the tailoring of educational content or recognition of activities. We utilized Machine Learning methods to accurately identify an individual's discrete location, together with knowledge-based models and tools to supply the associated semantics of identified locations.

Autoři článku: Summershopper9097 (Riggs Graversen)