Stroudnance8923
Exosomes are a subtype of extracellular vesicles. They range from 30 to 150 nm in diameter and originate from intraluminal vesicles. Exosomes were first identified as the mechanism for releasing unnecessary molecules from reticulocytes as they matured to red blood cells. Since then, exosomes have been shown to be secreted by a broad spectrum of cells and play an important role in the cardiovascular system. Different stimuli are associated with increased exosome release and result in different exosome content. The release of harmful DNA and other molecules via exosomes has been proposed as a mechanism to maintain cellular homeostasis. Because exosomes contain parent cell-specific proteins on the membrane and in the cargo that is delivered to recipient cells, exosomes are potential diagnostic biomarkers of various types of diseases, including cardiovascular disease. As exosomes are readily taken up by other cells, stem cell-derived exosomes have been recognized as a potential cell-free regenerative therapy to repair not only the injured heart but other tissues as well. The objective of this review is to provide an overview of the biological functions of exosomes in heart disease and tissue regeneration. Therefore, state-of-the-art methods for exosome isolation and characterization, as well as approaches to assess exosome functional properties, are reviewed. Investigation of exosomes provides a new approach to the study of disease and biological processes. Exosomes provide a potential "liquid biopsy," as they are present in most, if not all, biological fluids that are released by a wide range of cell types.Heart rate fragmentation (HRF), a marker of abnormal sinoatrial dynamics, was shown to be associated with incident cardiovascular events in the Multi-Ethnic Study of Atherosclerosis (MESA). PMSF clinical trial Here, we test the hypothesis that HRF is also associated with incident atrial fibrillation (AF) in the MESA cohort of participants who underwent in-home polysomnography (PSG) and in two high-risk subgroups those ≥70 yr taking antihypertensive medication and those with serum concentrations of NH2-terminal prohormone B-type natriuretic peptide (NT-proBNP) >125 pg/ml (top quartile). Heart rate time series (n = 1,858) derived from the ECG channel of the PSG were analyzed using newly developed HRF metrics, traditional heart rate variability (HRV) indices and two widely used nonlinear measures. Eighty-three participants developed AF over a mean follow-up period of 3.83 ± 0.87 yr. A one-standard deviation increase in HRF was associated with a 31% (95% CI 3-66%) increase in risk of incident AF, in Cox models adjusted for age, heigent AF in the Multi-Ethnic Study of Atherosclerosis. Fragmentation measures added value to the strongest contemporary predictors of AF, including ECG-derived parameters, coronary calcification score, serum concentrations of NH2-terminal prohormone B-type natriuretic peptide, and supraventricular ectopy. The computational algorithms for quantification of HRF could be readily incorporated into wearable ECG monitoring devices.Improvements in skeletal muscle endurance and oxygen uptake are blunted in patients with chronic obstructive pulmonary disease (COPD), possibly because of a limitation in the muscle capillary oxygen supply. Pericytes are critical for capillary blood flow adaptation during angiogenesis but may be impaired by COPD systemic effects, which are mediated by circulating factors. This study compared the pericyte coverage of muscle capillaries in response to 10 wk of exercise training in patients with COPD and sedentary healthy subjects (SHS). Fourteen patients with COPD were compared with seven matched SHS. SHS trained at moderate intensity corresponding to an individualized moderate-intensity patient with COPD trained at the same relative (%V̇o2 COPD-RI) or absolute (mL·min-1·kg-1 COPD-AI) intensity as SHS. Capillary-to-fiber ratio (C/F) and NG2+ pericyte coverage were assessed from vastus lateralis muscle biopsies, before and after 5 and 10 wk of training. We also tested in vitro the effect of COPD and SHS serum oncyte coverage of the skeletal capillaries is drastically reduced in patients with COPD compared with SHS during training-induced angiogenesis. Finally, it provides experimental evidence that circulating factors are involved in the impaired pericyte coverage of patients with COPD.Background Brigatinib has demonstrated its efficacy as first-line therapy and in further lines for ALK-positive non-small cell lung cancer (NSCLC) patients; however, real-world data in Latin America are scarce. Methods From January 2018 to March 2020, 46 patients with advanced ALK-positive NSCLC received brigatinib as second or further line of therapy in Mexico and Colombia. The primary end point was progression-free survival (PFS); secondary end point was time to treatment discontinuation (TTD). Results At a median follow-up of 9.3 months, the median PFS was 15.2 months (95% CI 11.6-18.8), and TTD was 18.46 months (95% CI 9.54-27.38). The estimated overall survival at 12 months was 80%. Safety profile was consistent with previously published data. Conclusion Brigatinib is an effective treatment for previously treated ALK-positive NSCLC patients in a real-world setting.Obesity and metabolic syndrome commonly underlie cardiovascular disease. ClockΔ19/Δ19 mice fed a normal diet develop obesity and metabolic syndrome; however, it is not known whether they develop or are resilient to cardiovascular disease. We found that ClockΔ19/Δ19 mice do not develop cardiac dysfunction, despite their underlying conditions. Moreover, in contrast to wild-type controls fed a high-fat diet (HFD), ClockΔ19/Δ19 HFD mice still do not develop cardiovascular disease. Indeed, ClockΔ19/Δ19 HFD mice have preserved heart weight despite their obesity, no cardiomyocyte hypertrophy, and preserved heart structure and function, even after 24 wk of a HFD. To determine why ClockΔ19/Δ19 mice are resilient to cardiac dysfunction despite their underlying obesity and metabolic conditions, we examined global cardiac gene expression profiles by microarray and bioinformatics analyses, revealing that oxidative stress pathways were involved. We examined the pathways in further detail and found that 1) SIRT-dependent oxidative stress pathways were not directly involved in resilience; 2) 4-hydroxynonenal (4-HNE) increased in wild-type HFD but not ClockΔ19/Δ19 mice, suggesting less reactive oxygen species in ClockΔ19/Δ19 mice; 3) cardiac catalase (CAT) and glutathione peroxidase (GPx) increased, suggesting strong antioxidant defenses in the hearts of ClockΔ19/Δ19 mice; and 4) Pparγ was upregulated in the hearts of ClockΔ19/Δ19 mice; this circadian-regulated gene drives transcription of CAT and GPx, providing a molecular basis for resilience in the ClockΔ19/Δ19 mice.