Stouttrolle8430

Z Iurium Wiki

an Society for Microbiology.Bifidobacterial species are common inhabitants of the gut of human infants during the period when milk is a major component of the diet. Bifidobacterium breve, Bifidobacterium bifidum, Bifidobacterium longum subspecies longum, and B. longum subspecies infantis have been detected frequently in infant feces, but subsp. infantis may be disadvantaged numerically in the gut of infants in westernized countries. This may be due to the different durations of breast milk feeding in different countries. Supplementation of the infant diet or replacement of breast milk using formula feeds is common in western countries. Formula milks often contain galacto- and/or fructo-oligosaccharides ('GOS', 'FOS', respectively) as additives to augment the concentration of oligosaccharides in ruminant milks, but the ability of subsp. infantis to utilize these potential growth substrates when in competition with other bifidobacterial species is unknown. We compared the growth and oligosaccharide utilization of GOS and FOS by bifidobactes infantis is a well-known bacterial species, but under modern child-rearing conditions it may be disadvantaged in the gut. Modern formula milks often contain particular oligosaccharide additives that are generally considered to support bifidobacterial growth. However, studies of the ability of various bifidobacterial species to grow together while using these oligosaccharides have not been conducted. These kinds of studies are essential for developing concepts of microbial ecology related to the influence of human nutrition on the development of the gut microbiota. Copyright © 2020 American Society for Microbiology.The Atlantis Massif rises 4,000 m above the seafloor near the Mid-Atlantic Ridge and consists of rocks uplifted from Earth's lower crust and upper mantle. Exposure of the mantle rocks to seawater leads to their alteration into serpentinites. These aqueous geochemical reactions, collectively known as the process of serpentinization, are exothermic and are associated with the release of hydrogen gas (H2), methane (CH4), and small organic molecules. The biological consequences of this flux of energy and organic compounds from the Atlantis Massif were explored by International Ocean Discovery Program (IODP) Expedition 357, which used seabed drills to collect continuous sequences of shallow ( less then 16 meters below seafloor) marine serpentinites and mafic assemblages. Here, we report the census of microbial diversity in samples of the drill cores, as measured by environmental 16S rRNA gene amplicon sequencing. The problem of contamination of subsurface samples was a primary concern during all stages of this pro water, collectively known as serpentinization, produce environmental conditions that can stimulate biological activity and are thought to be analogous to environments that were prevalent on the early Earth and perhaps other planets. The methodology and results of this project have implications for life detection experiments, including sample return missions, and provide a window into the diversity of microbial communities inhabiting subseafloor serpentinites. Copyright © 2020 Motamedi et al.Fusarium graminearum, the main pathogenic fungus causing Fusarium head blight (FHB), produces deoxynivalenol (DON), a key virulence factor, which is synthesized in the endoplasmic reticulum (ER). Sey1/atlastin, a dynamin-like GTPase protein, is known to be required for homotypic fusion of ER membranes, but the functions of this protein are unknown in pathogenic fungi. Here, we characterized a Sey1/atlastin homologue FgSey1 in F. graminearum Like Sey1/atlastin, FgSey1 is located in the ER. The FgSEY1 deletion mutant exhibited significantly reduced vegetative growth, asexual development, DON biosynthesis and virulence. Moreover, the ΔFgsey1 mutant was impaired in the formation of normal lipid droplets (LDs) and toxisomes, both of which participate in DON biosynthesis. selleck The GTPase, helix bundles (HBs), transmembrane segments (TMs) and cytosolic tail (CT) domains of FgSey1 are essential for its function, but only the TMs domain is responsible for its localization. Furthermore, the mutants FgSey1K63A and FgSey1T87Aive growth, DON production and pathogenicity in F. graminearum Our results provide the novel information on FgSey1 critical roles in fungal pathogenicity, and therefore FgSey1 could be a potential target for effective control measure of the disease caused by F. graminearum. Copyright © 2020 American Society for Microbiology.The structure and function of fungal communities in the coffee rhizosphere is shaped by crop environment. Because coffee can be grown along a management continuum from conventional application of pesticides and fertilizers in full sun to organic management in a shaded understory, we used coffee fields to hold host constant while comparing rhizosphere fungal communities in markedly different environmental conditions with regard to shade and inputs. We characterized the shade and soil environment in 25 fields under conventional, organic or transitional management in two regions of Costa Rica. We amplified the ITS2 region of fungal DNA from coffee roots in these fields and characterized the rhizosphere fungal community via high-throughput sequencing. Sequences were assigned to guilds to determine differences in functional diversity and trophic structure among coffee field environments. Organic fields had more shade, a greater richness of shade tree species, more leaf litter, and were less acidic, with lower soilunities and their functional diversity. This field study of the coffee agroecosystem suggests that organic management not only fosters a greater overall diversity of fungi, but also maintains a greater richness of saprotrophic, plant pathogenic and mycoparasitic fungi that has implications for efficiency of nutrient cycling and regulation of plant pathogen populations in agricultural systems. As well as influencing community composition and richness of rhizosphere fungi, shade management and use of fungicides and synthetic fertilizers altered the trophic structure of the coffee agroecosystem. Copyright © 2020 American Society for Microbiology.

Autoři článku: Stouttrolle8430 (Beasley Kahn)