Stougaardthorsen6817

Z Iurium Wiki

Here, we compare traditional variant discovery approaches to a pipeline based on de novo genome assembly of short read data followed by whole genome alignment, using simulated data sets with properties mimicking that of fungal pathogen genomes. We show that the latter approach exhibits levels of performance comparable to that of read-mapping based methodologies, when used on sequence data with sufficient coverage. We argue that this approach further allows additional types of genomic diversity to be explored, in particular as long-read third-generation sequencing technologies are becoming increasingly available to generate population genomic data. Copyright © 2020 Potgieter, Feurtey, Dutheil and Stukenbrock.Under hyperosmotic conditions, bacteria accumulate compatible solutes through synthesis or import. Bacillus subtilis imports a large set of osmostress protectants via five osmotically controlled transport systems (OpuA to OpuE). Biosynthesis of the particularly effective osmoprotectant glycine betaine requires the exogenous supply of choline. While OpuB is rather specific for choline, OpuC imports a broad spectrum of compatible solutes, including choline and glycine betaine. One previously mapped antisense RNA of B. subtilis, S1290, exhibits strong and transient expression in response to a suddenly imposed salt stress. It covers the coding region of the opuB operon and is expressed from a strictly SigB-dependent promoter. By inactivation of this promoter and analysis of opuB and opuC transcript levels, we discovered a time-delayed osmotic induction of opuB that crucially depends on the S1290 antisense RNA and on the degree of the imposed osmotic stress. Time-delayed osmotic induction of opuB is apparently caused by transcriptional interference of RNA-polymerase complexes driving synthesis of the converging opuB and S1290 mRNAs. When our data are viewed in an ecophysiological framework, it appears that during the early adjustment phase of B. subtilis to acute osmotic stress, the cell prefers to initially rely on the transport activity of the promiscuous OpuC system and only subsequently fully induces opuB. Our data also reveal an integration of osmostress-specific adjustment systems with the SigB-controlled general stress response at a deeper level than previously appreciated. Copyright © 2020 Rath, Reder, Hoffmann, Hammer, Seubert, Bremer, Völker and Mäder.Duck Tembusu virus (DTMUV), a member of Flaviviridae family, causes acute egg-drop syndrome in ducks. MicroRNAs (miRNAs) have been found to be involved in various biological processes, including tumor genesis, viral infection, and immune response. However, the functional effect of miRNAs on DTMUV replication remains largely unclear. This study aimed to elucidate the role of host microRNA-221-3p (miR-221-3p) in regulating DTMUV replication. Here, we indicated that the expression of miR-221-3p was significantly upregulated in duck embryo fibroblasts (DEFs) during DTMUV infection. Transfection of miR-221-3p mimic significantly reduced interferon (IFN) β production, whereas transfection of miR-221-3p inhibitor conversely significantly increased the expression of IFN-β in DTMUV-infected DEF. Moreover, we found that viral RNA copies, viral E protein expression level, and virus titer, which represent the replication and proliferation of virus, were all enhanced when transfecting the miR-221-3p mimic into DEF; reverse results were also observed by transfecting the miR-221-3p inhibitor. We also found that the expression of suppressor of cytokine signaling 5 (SOCS5) was downregulated in DEF infected with DTMUV. Besides, we further proved that SOCS5 is a target of miR-221-3p and that miR-221-3p could negatively modulate SOCS5 expression at both mRNA and protein levels. Finally, our results showed that overexpression of SOCS5 inhibited DTMUV replication and knockdown of SOCS5 enhanced DTMUV replication. Thus, our findings reveal a novel host evasion mechanism adopted by DTMUV via miR-221-3p, which may hew out novel strategies for designing miRNA-based vaccines and therapies. Copyright © 2020 Cui, Chen, Zhang, Cheng, Pan, Huang, Hu, Zhang, Wang, Zhu, Chen, Liu, Zhao, Wu, Yang, Liu, Zhang, Yu, Yin, Jing, Rehman, Tian, Pan and Jia.The bacterial chromosome must be efficiently compacted to fit inside the small and crowded cell while remaining accessible for the protein complexes involved in replication, transcription, and DNA repair. The dynamic organization of the nucleoid is a consequence of both intracellular factors (i.e., simultaneously occurring cell processes) and extracellular factors (e.g., environmental conditions, stress agents). Recent studies have revealed that the bacterial chromosome undergoes profound topological changes under stress. Among the many DNA-binding proteins that shape the bacterial chromosome structure in response to various signals, NAPs (nucleoid associated proteins) are the most abundant. These small, basic proteins bind DNA with low specificity and can influence chromosome organization under changing environmental conditions (i.e., by coating the chromosome in response to stress) or regulate the transcription of specific genes (e.g., those involved in virulence). Copyright © 2020 Hołówka and Zakrzewska-Czerwińska.The two black yeasts Exophiala dermatitidis and Exophiala spinifera that are clinically considered as the most virulent species potentially causing disseminated infections are both producing extracellular capsule-like material, are compared. In this study, 10 genomes of E. spinifera and E. dermatitidis strains, including both clinical and environmental isolates, were selected based on phylogenetic analysis, physiology tests and virulence tests, sequenced on the Illumina MiSeq sequencer and annotated. Comparison of genome data were performed between intraspecific and interspecific strains. We found capsule-associated genes were however not consistently present in both species by the comparative genomics. The prevalent clinical species, E. dermatitidis, has small genomes containing significantly less virulence-associated genes than E. spinifera, and also than saprobic relatives. Gene OG0012246 and Myb-like DNA-binding domain and SANT/Myb domain, restricted to two strains from human brain, was shared with the neurotropic species Rhinocladiella mackenziei. This study indicated that different virulence profiles existed in the two capsule-producing black yeasts, and the absence of consistent virulence-associated profiles supports the hypothesis that black yeasts are opportunists rather than primary pathogens. The results also provide the key virulence genes and drive the continuing research forward pathogen-host interactions to explore the pathogenesis. Copyright © 2020 Song, da Silva, Weiss, Vu, Moreno, Vicente, Li and de Hoog.The genus Paraburkholderia includes a variety of species with promising features for sustainable biotechnological solutions in agriculture through increasing crop productivity. Here, we present a novel Paraburkholderia isolate, a permanent and predominant member of the Dioscoreae bulbifera (yam family, Dioscoreaceae) phyllosphere, making up to 25% of the microbial community on leaf acumens. The 8.5 Mbp genome of isolate Msb3 encodes an unprecedented combination of features mediating a beneficial plant-associated lifestyle, including biological nitrogen fixation (BNF), plant hormone regulation, detoxification of various xenobiotics, degradation of aromatic compounds and multiple protein secretion systems including both T3SS and T6SS. The isolate exhibits significant growth promotion when applied to agriculturally important plants such as tomato, by increasing the total dry biomass by up to 40%. The open question about the "beneficial" nature of this strain led us to investigate ecological and generic boundaries in Burkholderia sensu lato. In a refined phylogeny including 279 Burkholderia sensu lato isolates strain Msb3 clusters within Clade I Paraburkholderia, which also includes few opportunistic strains that can potentially act as pathogens, as revealed by our ecological meta-data analysis. In fact, we demonstrate that all genera originating from the "plant beneficial and environmental" (PBE) Burkholderia species cluster include opportunists. This indicates that further functional examinations are needed before safe application of these strains in sustainable agricultural settings can be assured. Copyright © 2020 Herpell, Schindler, Bejtović, Fragner, Diallo, Bellaire, Kublik, Foesel, Gschwendtner, Kerou, Schloter and Weckwerth.Escherichia coli is a ubiquitous commensal and pathogen that has also been recognized as a multi-sectoral indicator of antimicrobial resistance (AMR). Given that latter focus, such as on resistances to extended-spectrum cephalosporins (ESC) and carbapenems, the reported population structure of E. coli is generally biased toward resistant isolates, with sequence type (ST)131 being widely reported in humans, and ST410 and ST648 being reported in animals. In this study, we characterized 618 non-duplicate E. coli isolates collected throughout France independently of their resistance phenotype. The B2 phylogroup was over-represented (79.6%) and positively associated with the presence of numerous virulence factors (VFs), including those defining the extra-intestinal pathogenic E. coli isolates (presence of ≥2 VFs papA, sfaS, focG, afaD, iutA, and kpsMTII) and those more specifically related to uropathogenic E. coli (cnf1, hlyD). The major STs associated with clinical isolates from dogs were by far the dog-associated ST372 (20.7%) and ST73 (20.1%), a lineage that had commonly been considered until now as human-associated. Resistance to ESC was found in 33 isolates (5.3%), along with one carbapenemase-producing isolate, and was mostly restricted to non-B2 isolates. In conclusion, the presence of virulent E. coli lineages may be the issue, rather than the presence of ESC-resistant isolates, and the risk of transmission of such virulent isolates to humans needs to be further studied. Copyright © 2020 Valat, Drapeau, Beurlet, Bachy, Boulouis, Pin, Cazeau, Madec and Haenni.Acinetobacter baumannii causes nosocomial infections due to its multidrug resistance and high environmental adaptability. Colistin is a polypeptide antibacterial agent that targets lipopolysaccharide (LPS) and is currently used to control serious multidrug-resistant Gram-negative bacterial infections, including those caused by A. baumannii. However, A. baumannii may acquire colistin resistance by losing their LPS. In mouse models, LPS-deficient A. baumannii have attenuated virulence. Nevertheless, the mechanism through which the pathogen is cleared by host immune cells is unknown. Here, we established colistin-resistant A. baumannii strains and analyzed possible mechanisms through which they are cleared by neutrophils. Colistin-resistant, LPS-deficient strains harbor mutations or insertion sequence (IS) in lpx genes, and introduction of intact lpx genes restored LPS deficiency. Analysis of interactions between these strains and neutrophils revealed that compared with wild type, LPS-deficient A. baumannii only weakly stimulated neutrophils, with consequent reduced levels of reactive oxygen species (ROS) and inflammatory cytokine production. Nonetheless, neutrophils preferentially killed LPS-deficient A. baumannii compared to wild-type strains. Moreover, LPS-deficient A. baumannii strains presented with increased sensitivities to antibacterial lysozyme and lactoferrin. We revealed that neutrophil-secreted lysozyme was the antimicrobial factor during clearance of LPS-deficient A. SNX-5422 price baumannii strains. These findings may inform the development of targeted therapeutics aimed to treat multidrug-resistant infections in immunocompromised patients who are unable to mount an appropriate cell-mediated immune response. Copyright © 2020 Kamoshida, Akaji, Takemoto, Suzuki, Sato, Kai, Hibino, Yamaguchi, Kikuchi-Ueda, Nishida, Unno, Tansho-Nagakawa, Ubagai, Miyoshi-Akiyama, Oda and Ono.

Autoři článku: Stougaardthorsen6817 (Soto Jarvis)