Stougaardlausen9627
Alphaviruses (genus Alphavirus; family Togaviridae) are a medically relevant family of viruses that include chikungunya virus and Mayaro virus. Infectious cDNA clones of these viruses are necessary molecular tools to understand viral biology. Traditionally, rescuing virus from an infectious cDNA clone requires propagating plasmids in bacteria, which can result in mutations in the viral genome due to bacterial toxicity or recombination and requires specialized equipment and knowledge to propagate the bacteria. Here, we present an alternative- rolling circle amplification (RCA), an in vitro technology. We demonstrate that the viral yield of transfected RCA product is comparable to midiprepped plasmid, albeit with a slight delay in kinetics. RCA, however, is cheaper and less time-consuming. Further, sequential RCA did not introduce mutations into the viral genome, subverting the need for glycerol stocks and retransformation. These results indicate that RCA is a viable alternative to traditional plasmid-based approaches to viral rescue.
the acquisition of microscopic images of human bones is a complex and expensive process. Moreover, the objective of obtaining a large data bank with microscopic images in order to carry out massive studies or to train automatic generation algorithms is not an option. Consequently, most of the current work focuses on the analysis of small regions captured by a microscope. The aim is the development of a tool to represent bone tissue at microscopic levels which is suitable for performing physical simulations, as well as for the diagnosis of various diseases. This work includes the whole process from the digitization of a human bone to the generation of bone tissue in a determined area of the bone selected through a cutting plane.
based on the anatomy of the bone structure, the parameters that allow the representation of the bone tissue at mesoscale level have been analyzed. Although the models are randomly generated, they are based on statistical parameters. The model generator is based on the analysis of iess and parameterize it completely in order to allow the recreation of the tissue conditions of other studies.
the model generator allows us to perform precise simulations in order to obtain realistic images with physical characteristics in accordance with reality. It is necessary to emphasize that even though the most relevant structures are included, the proposed model generator can be expanded to include new parameters or elements, so that it can be adapted to new needs. It could even break down randomness and parameterize it completely in order to allow the recreation of the tissue conditions of other studies.Neospora caninum (N. caninum) is an intracellular parasite and is the causative agent of neosporosis, which leads to reproductive failure in cattle. Pyroptosis is a recently discovered form of programmed cell death executed by gasdermin D (GSDMD). This cell death mechanism is an important host defense against intracellular pathogens. However, pyroptosis induced by N. caninum is poorly understood. The aim of this study was to explore the roles of GSDMD-mediated pyroptosis during N. caninum infection in vivo. N. caninum-infected wild type mice and GSDMD-deficient mice were used to evaluate host resistance and its ability to affect immune response against this parasite. The results showed that GSDMD deficiency significantly reduced survival and impaired the host's abilities to clear parasite loads in tissues, monocytes/macrophages and neutrophils. Additionally, GSDMD was essential for circulating IL-18 and IFN-γ production induced by N. caninum infection, indicating that GSDMD can mediate the Th 1 immune response against N. caninum infection. Additional data revealed that treatment with exogenous recombinant IL-18 in N. caninum-infected Gsdmd-/- mice rescues the reduction of circulating IFN-γ production to help eliminate the parasite. Taken together, our data indicate that GSDMD-mediated pyroptosis plays a vital role in maintaining host resistance to N. caninum and is essential for clearing the parasite. This form of programmed cell death promotes the Th 1 immune response by controlling IL-18 release and is considered a host defense against N. caninum. This study expands our understanding of interactions between host immune response/defense and N. caninum infection.New evidence suggests that glycan expression in placental cells of women with invasive disorders of pregnancy differs from that in normal pregnant women. Hypothesizing that modifications of glycan expression could account for the course of preeclampsia, we established placental villous histocultures and compared glycan expression in women with preeclampsia with that in normal pregnant women and also in syncytialized BeWo cells, and we tested the effect of glycan expression on the functional phenotypes of circulating natural killer (NK) cells. Histocultures of third-trimester placentae from women with preeclampsia and full-term placentae from healthy pregnant women and BeWo choriocarcinoma cells were assessed for the expression of terminal glycans by lectin-binding assays. Circulating NK cells from nonpregnant healthy donors were tested in vitro for their cytotoxic activity and intracellular cytokine content. click here Histocultures from women with preeclampsia expressed significantly more mannose than did those from healthy pregnant women. Both histocultures and BeWo cells expressed terminal fucose, mannose, sialic acid, and N -acetylgalactosamine, although mean fluorescence intensity (MFI) expression was lower in choriocarcinoma cells than in cells from histocultures. Cocultures of circulating NK cells with K562 target cells resulted in a dose-dependent cytotoxicity effect, but the use of BeWo cells as target reduced cytotoxic activity; this reduction was not affected by syncytialization. Histocultures of placental villous tissue of women with preeclampsia expressed high levels of terminal mannose. We proposethat placental glycans may modulate the functional activity of circulating NK cells in the context of systemic inflammatory response in preeclampsia.