Stougaardheller2279

Z Iurium Wiki

Methods for imaging of cerebral blood flow do not typically resolve the cortex and thus underestimate flow. However, recent work with high-resolution MRI has emphasized the regional and depth-dependent structural, functional and relaxation times variations within the cortex. Using high-resolution Arterial Spin Labeling (ASL) and T1 mapping acquisitions, we sought to probe the effects of spatial resolution and tissue heterogeneity on cortical cerebral blood flow (CBF) measurements with ASL. We acquired high-resolution (1.6mm)3 whole brain ASL data in a cohort of 10 volunteers at 3T, along with T1 and transit-time (ATT) mapping, followed by group cortical surface-based analysis using FreeSurfer of the different measured parameters. Fully resolved regional analysis showed higher than average mid-thickness CBF in primary motor areas (+15%,p less then 0.002), frontal regions (+17%,p less then 0.01) and auditory cortex, while occipital regions had lower average CBF (-20%,p less then 10-5). ASL signal was higher towards the pial surface but correction for the shorter T1 near the white matter surface reverses this gradient, at least when using the low-resolution ATT map. Similar to structural measures, fully-resolved ASL CBF measures show significant differences across cortical regions. Depth-dependent variation of T1 in the cortex complicates interpretation of depth-dependent ASL signal and may have implications for the accurate CBF quantification at lower resolutions.The brain is the most important organ in our body requiring its unique microenvironment. By the virtue of its function, the blood-brain barrier poses a significant hurdle in drug delivery for the treatment of neurological diseases. There are also different theories regarding how molecules are typically effluxed from the brain. In this review, we comprehensively discuss how the different pharmacokinetic techniques used for measuring brain uptake/permeability of small molecules have evolved with time. We also discuss the advantages and disadvantages associated with these different techniques as well as the importance to utilize the right method to properly assess CNS exposure to drug molecules. Even though very strong advances have been made we still have a long way to go to ensure a reduction in failures in central nervous system drug development programs.Reductions of baseline cerebral blood flow (CBF) of ∼10-20% are a common symptom of Alzheimer's disease (AD) that appear early in disease progression and correlate with the severity of cognitive impairment. These CBF deficits are replicated in mouse models of AD and recent work shows that increasing baseline CBF can rapidly improve the performance of AD mice on short term memory tasks. MEK inhibitor review Despite the potential role these data suggest for CBF reductions in causing cognitive symptoms and contributing to brain pathology in AD, there remains a poor understanding of the molecular and cellular mechanisms causing them. This review compiles data on CBF reductions and on the correlation of AD-related CBF deficits with disease comorbidities (e.g. cardiovascular and genetic risk factors) and outcomes (e.g. cognitive performance and brain pathology) from studies in both patients and mouse models, and discusses several potential mechanisms proposed to contribute to CBF reductions, based primarily on work in AD mouse models. Future research aimed at improving our understanding of the importance of and interplay between different mechanisms for CBF reduction, as well as at determining the role these mechanisms play in AD patients could guide the development of future therapies that target CBF reductions in AD.The generalization of perfusion-based, anterior circulation large vessel occlusion selection criteria to posterior circulation stroke is not straightforward due to physiologic delay, which we posit produces physiologic prolongation of the posterior circulation perfusion time-to-maximum (Tmax). To assess normative Tmax distributions, patients undergoing CTA/CTP for suspected ischemic stroke between 1/2018-3/2019 were retrospectively identified. Subjects with any cerebrovascular stenoses, or with follow-up MRI or final clinical diagnosis of stroke were excluded. Posterior circulation anatomic variations were identified. CTP were processed in RAPID and segmented in a custom pipeline permitting manually-enforced arterial input function (AIF) and perfusion estimations constrained to pre-specified vascular territories. Seventy-one subjects (mean 64 ± 19 years) met inclusion. Median Tmax was significantly greater in the cerebellar hemispheres (right 3.0 s, left 2.9 s) and PCA territories (right 2.9 s; left 3.3 s) than in the anterior circulation (right 2.4 s; left 2.3 s, p  less then  0.001). Fetal PCA disposition eliminated ipsilateral PCA Tmax delays (p = 0.012). Median territorial Tmax was significantly lower with basilar versus any anterior circulation AIF for all vascular territories (p  less then  0.001). Significant baseline delays in posterior circulation Tmax are observed even without steno-occlusive disease and vary with anatomic variation and AIF selection. The potential for overestimation of at-risk volumes in the posterior circulation merits caution in future trials.Preclinical and postmortem studies have suggested that regional synaptic density and glucose consumption (CMRGlc) are strongly related. However, the relation between synaptic density and cerebral glucose metabolism in the human brain has not directly been assessed in vivo. Using [11C]UCB-J binding to synaptic vesicle glycoprotein 2 A (SV2A) as indicator for synaptic density and [18F]FDG for measuring cerebral glucose consumption, we studied twenty healthy female subjects (age 29.6 ± 9.9 yrs) who underwent a single-day dual-tracer protocol (GE Signa PET-MR). Global measures of absolute and relative CMRGlc and specific binding of [11C]UCB-J were indeed highly significantly correlated (r > 0.47, p  less then  0.001). However, regional differences in relative [18F]FDG and [11C]UCB-J uptake were observed, with up to 19% higher [11C]UCB-J uptake in the medial temporal lobe (MTL) and up to 17% higher glucose metabolism in frontal and motor-related areas and thalamus. This pattern has a considerable overlap with the brain regions showing different levels of aerobic glycolysis.

Autoři článku: Stougaardheller2279 (Herman Holmgaard)