Storgaardcoates1048

Z Iurium Wiki

Post-self-consistent dispersion corrections are now the norm when applying density-functional theory to systems where non-covalent interactions play an important role. However, there is a wide range of base functionals and dispersion corrections available from which to choose. In this work, we opine on the most desirable requirements to ensure that both the base functional and dispersion correction, individually, are as accurate as possible for non-bonded repulsion and dispersion attraction. The base functional should be dispersionless, numerically stable, and involve minimal delocalization error. Simultaneously, the dispersion correction should include finite damping, higher-order pairwise dispersion terms, and electronic many-body effects. These criteria are essential for avoiding reliance on error cancellation and obtaining correct results from correct physics.Recent experiments on laser-dissociation of aligned homonuclear diatomic molecules show an asymmetric forward-backward (spatial) electron-localization along the laser polarization axis. Most theoretical models attribute this asymmetry to interference effects between gerade and ungerade vibronic states. Presumably due to alignment, these models neglect molecular rotations and hence infer an asymmetric (post-dissociation) charge distribution over the two identical nuclei. In this paper, we question the equivalence that is made between spatial electron-localization, observed in experiments, and atomic electron-localization, alluded by these theoretical models. We show that (seeming) agreement between these models and experiments is due to an unfortunate omission of nuclear permutation symmetry, i.e., quantum statistics. Enforcement of the latter requires mandatory inclusion of the molecular rotational degree of freedom, even for perfectly aligned molecules. XST-14 purchase Unlike previous interpretations, we ascribe spatial electron-localization to the laser creation of a rovibronic wavepacket that involves field-free molecular eigenstates with opposite space-inversion symmetry i.e., even and odd parity. Space-inversion symmetry breaking would then lead to an asymmetric distribution of the (space-fixed) electronic density over the forward and backward hemisphere. However, owing to the simultaneous coexistence of two indistinguishable molecular orientational isomers, our analytical and computational results show that the post-dissociation electronic density along a specified space-fixed axis is equally shared between the two identical nuclei-a result that is in perfect accordance with the principle of the indistinguishability of identical particles.We propose several simple algebraic approximations for the second virial coefficient of fluids whose molecules interact by a generic Mie m - 6 intermolecular pair potential. In line with a perturbation theory, the parametric equations are formulated as the sum of a contribution due to a reference part of the intermolecular potential and a perturbation. Thereby, the equations provide a convenient (low-density) starting point for developing equation-of-state models of fluids or for developing similar approximations for the virial coefficient of (polymeric-)chain fluids. The choice of Barker and Henderson [J. Chem. Phys. 47, 4714 (1967)] and Weeks, Chandler, and Andersen [Phys. Rev. Lett. 25, 149 (1970); J. Chem. Phys. 54, 5237 (1971); and Phys. Rev. A 4, 1597 (1971)] for the reference part of the potential is considered. Our analytic approximations correctly recover the virial coefficient of the inverse-power potential of exponent m in the high-temperature limit and provide accurate estimates of the temperatures for which the virial coefficient equals zero or takes on its maximum value. Our description of the reference contribution to the second virial coefficient follows from an exact mapping onto the second virial coefficient of hard spheres; we propose a simple algebraic equation for the corresponding effective diameter of the hard spheres, which correctly recovers the low- and high-temperature scaling and limits of the reference fluid's second virial coefficient.We test the theoretical free energy surface (FES) for two-step nucleation (TSN) proposed by Iwamatsu [J. Chem. Phys. 134, 164508 (2011)] by comparing the predictions of the theory to numerical results for the FES recently reported from Monte Carlo simulations of TSN in a simple lattice system [James et al., J. Chem. Phys. 150, 074501 (2019)]. No adjustable parameters are used to make this comparison. That is, all the parameters of the theory are evaluated directly for the model system, yielding a predicted FES, which we then compare to the FES obtained from simulations. We find that the theoretical FES successfully predicts the numerically evaluated FES over a range of thermodynamic conditions that spans distinct regimes of behavior associated with TSN. All the qualitative features of the FES are captured by the theory, and the quantitative comparison is also very good. Our results demonstrate that Iwamatsu's extension of classical nucleation theory provides an excellent framework for understanding the thermodynamics of TSN.The standard fewest-switches surface hopping (FSSH) approach fails to model nonadiabatic dynamics when the electronic Hamiltonian is complex-valued and there are multiple nuclear dimensions; FSSH does not include geometric magnetic effects and does not have access to a gauge independent direction for momentum rescaling. In this paper, for the case of a Hamiltonian with two electronic states, we propose an extension of Tully's FSSH algorithm, which includes geometric magnetic forces and, through diabatization, establishes a well-defined rescaling direction. When combined with a decoherence correction, our new algorithm shows satisfying results for a model set of two-dimensional single avoided crossings.In statistical mechanics, the formation free energy of an i-mer can be understood as the Gibbs free energy change in a system consisting of pure monomers after and prior to the formation of the i-mer. For molecules interacting via Lennard-Jones potential, we have computed the formation free energy of a Stillinger i-mer [F. H. Stillinger, J. Chem. Phys. 38, 1486 (1963)] and a ten Wolde-Frenkel (tWF) [P. R. ten Wolde and D. Frenkel, J. Chem. Phys. 109, 9901 (1998)] i-mer at spinodal at reduced temperatures from 0.7 to 1.2. It turns out that the size of a critical Stillinger i-mer remains finite and its formation free energy is on the order of kBT, and the size of a critical tWF i-mer remains finite and its formation free energy is even higher. This can be explained by Binder's theory [K. Binder, Phys. Rev. A 29, 341 (1984)] that for a system, when approaching spinodal, if the Ginzburg criterion is not satisfied, a gradual transition will take place from nucleation to spinodal decomposition, where the free-energy barrier height is on the order of kBT.We present a basis set correction scheme for the coupled-cluster singles and doubles (CCSD) method. The scheme is based on employing frozen natural orbitals (FNOs) and diagrammatically decomposed contributions to the electronic correlation energy, which dominate the basis set incompleteness error (BSIE). As recently discussed in the work of Irmler et al. [Phys. Rev. Lett. 123, 156401 (2019)], the BSIE of the CCSD correlation energy is dominated by the second-order Møller-Plesset (MP2) perturbation energy and the particle-particle ladder term. Here, we derive a simple approximation to the BSIE of the particle-particle ladder term that effectively corresponds to a rescaled pair-specific MP2 BSIE, where the scaling factor depends on the spatially averaged correlation hole depth of the coupled-cluster and first-order pair wavefunctions. The evaluation of the derived expressions is simple to implement in any existing code. We demonstrate the effectiveness of the method for the uniform electron gas. Furthermore, we apply the method to coupled-cluster theory calculations of atoms and molecules using FNOs. Employing the proposed correction and an increasing number of FNOs per occupied orbital, we demonstrate for a test set that rapidly convergent closed and open-shell reaction energies, atomization energies, electron affinities, and ionization potentials can be obtained. Moreover, we show that a similarly excellent trade-off between required virtual orbital basis set size and remaining BSIEs can be achieved for the perturbative triples contribution to the CCSD(T) energy employing FNOs and the (T*) approximation.The composition-dependent change in the work-function (WF) of binary silver-potassium nanoparticles has been studied experimentally by synchrotron-based x-ray photoelectron spectroscopy (PES) and theoretically using a microscopic jellium model of metals. The Ag-K particles with different K fractions were produced by letting a beam of preformed Ag particles pass through a volume with K vapor. The PES on a beam of individual non-supported Ag-K nanoparticles created in this way allowed a direct absolute measurement of their WF, avoiding several usual shortcomings of the method. Experimentally, the WF has been found to be very sensitive to K concentration Already at low exposure, it decreased down to ≈2 eV-below the value of pure K. In the jellium modeling, considered for Ag-K nanoparticles, two principally different adsorption patterns were tested without and with K diffusion. The experimental and calculation results together suggest that only efficient surface alloying of two metals, whose immiscibility was long-term textbook knowledge, could lead to the observed WF values.The structures of metal-organic frameworks (MOFs) can be tuned to reproducibly create adsorption properties that enable the use of these materials in fixed-adsorption beds for non-thermal separations. However, with millions of possible MOF structures, the challenge is to find the MOF with the best adsorption properties to separate a given mixture. Thus, computational, rather than experimental, screening is necessary to identify promising MOF structures that merit further examination, a process traditionally done using molecular simulation. However, even molecular simulation can become intractable when screening an expansive MOF database for their separation properties at more than a few composition, temperature, and pressure combinations. Here, we illustrate progress toward an alternative computational framework that can efficiently identify the highest-performing MOFs for separating various gas mixtures at a variety of conditions and at a fraction of the computational cost of molecular simulation. This frameforming for the industrially relevant separations 80/20 Xe/Kr at 1 bar and 80/20 N2/CH4 at 5 bars. Finally, we used the MOF free energies (calculated on our entire database) to identify privileged MOFs that were also likely synthetically accessible, at least from a thermodynamic perspective.Ab initio electron propagator methods are employed to predict the vertical electron attachment energies (VEAEs) of OH3 +(H2O)n clusters. The VEAEs decrease with increasing n, and the corresponding Dyson orbitals are diffused over exterior, non-hydrogen bonded protons. Clusters formed from OH3 - double Rydberg anions (DRAs) and stabilized by hydrogen bonding or electrostatic interactions between ions and polar molecules are studied through calculations on OH3 -(H2O)n complexes and are compared with more stable H-(H2O)n+1 isomers. Remarkable changes in the geometry of the anionic hydronium-water clusters with respect to their cationic counterparts occur. Rydberg electrons in the uncharged and anionic clusters are held near the exterior protons of the water network. For all values of n, the anion-water complex H-(H2O)n+1 is always the most stable, with large vertical electron detachment energies (VEDEs). OH3 -(H2O)n DRA isomers have well separated VEDEs and may be visible in anion photoelectron spectra. Corresponding Dyson orbitals occupy regions beyond the peripheral O-H bonds and differ significantly from those obtained for the VEAEs of the cations.

Autoři článku: Storgaardcoates1048 (Ibsen Macias)