Starknygaard7169
A bias-free source-independent quantum random number generator scheme based on the measurement of vacuum fluctuation is proposed to realize the effective elimination of system bias and common mode noise introduced by the local oscillator. Optimal parameter settings are derived to avoid the system recording two canonically conjugate quadratures simultaneously in each measurement. In particular, it provides a new approach to investigate the performance difference between measuring two quadratures of equal and unequal intensity. It is experimentally demonstrated that the system supports 4.2 Gbps bias-free source-independent random number generation, where its common mode rejection ratio reaches 61.17 dB. Furthermore, the scheme offers an all-optical method facilitating the integration of source-independent quantum random number generators into compact chips.Scene classification of high-resolution remote sensing images is a fundamental task of earth observation. And numerous methods have been proposed to achieve this. However, these models are inadequate as the number of labelled training data limits them. Most of the existing methods entirely rely on global information, while regions with class-specific ground objects determine the categories of high-resolution remote sensing images. An ensemble model with a cascade attention mechanism, which consists of two kinds of the convolutional neural network, is proposed to address these issues. To improve the generality of the feature extractor, each branch is trained on different large datasets to enrich the prior knowledge. Moreover, to force the model to focus on the most class-specific region in each high-resolution remote sensing image, a cascade attention mechanism is proposed to combine the branches and capture the most discriminative information. By experiments on four benchmark datasets, OPTIMAL-31, UC Merced Land-Use Dataset, Aerial Image Dataset and NWPU-RESISC45, the proposed end-to-end model cascade attention-based double branches model in this paper achieves state-of-the-art performance on each benchmark dataset.We report on the performances of a coherent DIAL/Doppler fiber lidar called VEGA, allowing for simultaneous measurements of methane and wind atmospheric profiles. It features a 10µJ, 200 ns, 20 kHz fiber pulsed laser emitter at 1645 nm, and it has been designed to monitor industrial methane leaks and fugitive emissions in the environment. The system performance has been assessed for range-resolved (RR) and integrated-path (IP) methane measurements in natural background conditions (i.e. ambient methane level). For RR measurements, the measured Allan deviation at τ=10 s is in the range of 3-20 ppm, depending of the aerosol load, at a distance of 150 m, with 30 m range resolution, and a beam focused around 150-200 m. For IP measurements, using a natural target at 2.2 km of distance, the Allan deviation at τ=10 s is in the range of 100-200 ppb. In both cases, deviation curves decrease as τ-1/2, up to 1000 seconds for the longest averaging time. Finally, the lidar ability to monitor an industrial methane leak is demonstrated during a field test.The nonlinearity of magnons plays an important role in the study of an optomagnonical system. Selleckchem Alisertib Here in this paper, we focus on the high-order sideband and frequency comb generation characteristics in the atom coupled optomagnonical resonator. We find that the atom-cavity coupling strength is related to the nonlinear coefficients, and the efficiency of sidebands generation could be reinforced by tuning the polarization of magnons. Besides, we show that the generation of the sidebands could be suppressed under the large dissipation condition. This study provides a novel way to engineer the low-threshold high-order sidebands in hybrid optical microcavities.Diffractive optical elements are ultra-thin optical components required for constructing very compact optical 3D sensors. However, the required wide-angle diffractive 2D fan-out gratings have been elusive due to design challenges. Here, we introduce a new strategy for optimizing such high-performance and wide-angle diffractive optical elements, offering unprecedented control over the power distribution among the desired diffraction orders with only low requirements with respect to computational power. The microstructure surfaces were designed by an iterative gradient optimization procedure based on an adjoint-state method, capable to account for application-dependent target functions while ensuring compatibility with existing fabrication processes. The results of the experimental characterization confirm the simulated tailored power distributions and optical efficiencies of the fabricated elements.We report on our realization of a high-power holmium doped fiber laser, together with the validation of our numerical simulation of the laser. We first present the measurements of the physical parameters that are mandatory to model accurately the laser-holmium interactions in our silica fiber. We then describe the realization of the clad-pumped laser, based on a triple-clad large mode area holmium (Ho) doped silica fiber. The output signal power is 90 W at 2120 nm, with an efficiency of about 50% with respect to the coupled pump power. This efficiency corresponds to the state of the art for clad-pumped Ho-doped fiber lasers in the 100 W power class. By comparing the experimental results to our simulation, we demonstrate its validity and use it to show that the efficiency is limited, for our fiber, by the non-saturable absorption caused by pair-induced quenching between adjacent holmium ions.We propose a transmission enhanced surface plasmon resonance nano-microscope. The nano-microscope is prepared at the cone-frustum-shaped annular-core fiber (ACF) end by mechanical polishing at the end of the ACF, and the gold film deposition on this end surface through magnetron sputtering technology obtains an excited surface plasmon resonance (SPR) that can direct to the center along the radial direction of the fiber. The cone-frustum-shaped ACF end surface is taken as a stage, and with the advantage of the SPR resonance enhancement effect, the ordinary microscope can realize nano-imaging. The imaging experiment results of 300nm polystyrene nano-spheres show that this auxiliary microscopic imaging technology can break through the diffraction limit and can eliminate the smear image caused by the surface plasmon wave (SPW) illumination in a single direction.