Stanleybrown4649
The present study establishes the structure/activity relationship of TriTACs and describes the development of HPN424, a PSMA- (FOLH1-) targeting TriTAC in clinical development for patients with metastatic castration-resistant prostate cancer.STAT3 has been recognized for its key role in the progression of cancer, where it is frequently upregulated or constitutively hyperactivated, contributing to tumor cell proliferation, survival, and migration, as well as angiogenesis and suppression of antitumor immunity. Given the ubiquity of dysregulated STAT3 activity in cancer, it has long been considered a highly attractive target for the development of anticancer therapies. Efforts to target STAT3, however, have proven to be especially challenging, perhaps owing to the fact that transcription factors lack targetable enzymatic activity and have historically been considered "undruggable." Small-molecule inhibitors targeting STAT3 have been limited by insufficient selectivity and potency. More recently, therapeutic approaches that selectively target STAT3 protein for degradation have been developed, offering novel strategies that do not rely on inhibition of upstream pathways or direct competitive inhibition of the STAT3 protein. Here, we review these emerging approaches, including the development of STAT3 proteolysis targeting chimera agents, as well as preclinical and clinical studies of chemically stabilized antisense molecules, such as the clinical agent AZD9150. These therapeutic strategies may robustly reduce the cellular activity of oncogenic STAT3 and overcome the historical limitations of less selective small molecules.Epigenetic activation of Wnt/β-catenin signaling plays a critical role in Wnt-induced tumorigenesis, notably in colorectal cancers. KDM3 and KDM4 histone demethylases have been reported to promote oncogenic Wnt signaling through demethylation of H3K9 on Wnt target gene promoters and are suggested to be potential therapeutic targets. However, potent inhibitors for these regulators are still not available. In addition, which family is most responsible for activation of Wnt target genes and Wnt-induced oncogenesis is not well documented, specifically in colorectal cancer. In this study, we characterized the functional redundancy and differences between KDM3 and KDM4 in regard to regulating Wnt signaling. Our data suggest that KDM3 may play a more essential role than KDM4 in regulating oncogenic Wnt signaling in human colorectal cancer. We also identified that IOX1, a known histone demethylase inhibitor, significantly suppresses Wnt target gene transcription and colorectal cancer tumorigenesis. Mechanistically, IOX1 inhibits the enzymatic activity of KDM3 by binding to the Jumonji C domain and thereby preventing the demethylation of H3K9 on Wnt target gene promoters. Taken together, our data not only identified the critical mechanisms by which IOX1 suppressed Wnt/β-catenin signaling and colorectal cancer tumorigenesis through inhibition of KDM3, but also suggested that IOX1 may represent an attractive small molecule lead for future drug design and discovery.
Type 2 diabetes (T2D) is a multifactorial disease affecting mostly adults older than 40 years. The aim of the study was to examine
gene polymorphism influence on the risk of T2D, especially in young adults.
200 diabetic patients and 221 healthy controls participated in this study. Three
gene polymorphism have been analyzed
(single-nucleotide polymorphism Ile
Val), homozygous deletion of
(null/null) and
(null/null), using TaqMan real-time quantitative PCR.
The distribution of examined polymorphisms was similar in patient group and control group. Statistically significant differences were demonstrated for the combination of
and
/
genotypes between patients diagnosed before 40 years of age and healthy people (12.5% vs 0.9%, p=0.016). Moreover, all three examined gene polymorphism together (
,
and
genotype) was observed in 12.5% of patients diagnosed before 40 years of age and in 0.5% of healthy individuals (p=0.013).
In conclusion, the results suggest that
polymorphism may be one of the risk factors for developing T2D at a younger age than the T2D population average.
In conclusion, the results suggest that GST polymorphism may be one of the risk factors for developing T2D at a younger age than the T2D population average.
Epidemiological studies indicate an association between type 2 diabetes and cognitive dysfunction that appear to start already in the prediabetic state. Although cross-sectional studies have linked insulin resistance to impaired cognition, the potential predictive value of insulin resistance has not yet been sufficiently studied longitudinally without confounding by overt diabetes (and its pharmacological treatment).
We investigated longitudinal data from participants of the 'Tübinger Evaluation of Risk Factors for Early Detection of Neurodegeneration' Study. Subjects underwent a neurocognitive assessment battery (CERAD Plus battery; Consortium to Establish a Registry for Alzheimer's Disease) at baseline and followed every 2 years (median follow-up 4.0 Q1-3 2.2-4.3 years). Subjects within a pre-diabetic glycated hemoglobin range of 5.6%-6.5% underwent 5-point 75 g oral glucose tolerance tests (OGTTs) with assessment of insulin sensitivity and insulin secretion (n=175). Subjects with newly diagnosed diabetle elevation of blood glucose predicts cognitive decline, specifically in the memory domain, in persons with prediabetes. Temsirolimus manufacturer Treatments of diabetes that improve insulin sensitivity might therefore have the potential to postpone or even prevent cognitive decline in patients with diabetes.
Both environmental and genetic factors contribute to type 2 diabetes (T2D) risk. Dozens of T2D susceptibility loci have been identified by genome-wide association study. However, these loci account for only a small fraction of the familial T2D risk. We hypothesized that the gene-obesity interaction may contribute to the missing heritability.
Forty-eight T2D-associated variants were genotyped using the TaqMan OpenArray Genotyping System and iPLEX Sequenom MassARRAY platform in two separate studies. Obesity was defined according to multiple indexes (body mass index (BMI), waist circumference and waist-hip ratio). Multiplicative interactions were tested using general logistic regression to assess the gene-obesity interaction effect on T2D risk among a total of 6206 Chinese Hans.
After adjusting for the main effects of genes and obesity, as well as covariates (age, sex, smoking and alcohol consumption status), robust multiplicative interaction effects were observed between rs10811661 in
and multiple obesity indices (p ranged from 0.