Stallingskoch1153

Z Iurium Wiki

Current Photoacoustic tomography (PAT) approaches are based on a single-element transducer that exhibits compromised performance in clinical imaging applications. For example, vascular, tumors are likely to have complicated shapes and optical absorptions, covering relatively wide spectra in acoustic signals. The wide ultrasonic spectra make it difficult to set the detection bandwidth optimally in advance. In this work, we propose a stack-layer dual-element ultrasonic transducer for PAT. The central frequencies of the two piezoelectric elements are 3.06 MHz (99.3% bandwidth at -6 dB) and 11.07 MHz (85.2% bandwidth at -6 dB), respectively. This transducer bridges the sensitivity capability of ultrasound and the high contrast of optical methods in functional photoacoustic tomography. The dual-element transducer enabled multiscale analysis of the vascular network in rat brains. Using a multi-wavelength imaging scheme, the blood oxygen saturation was also detected. The preliminary results showed the great potential of broad-bandwidth functional PAT on vascular network visualization. Selleckchem Vorinostat The method can also be extended to whole-body imaging of small animals, breast cancer detection, and finger joint imaging.Microfluidic devices in combination with fluorescent microscopy offer high-resolution and high-content platforms to study single-cell morphology, behavior and dynamic process in replicative aging of budding yeast, Saccharomyces cerevisiae. However, a huge mass of recorded images makes the data processing labor-intensive and time-consuming to determine yeast replicative lifespan (RLS), a primary criterion in yeast aging. To address this limitation and pursue label-free RLS assays, electrical impedance spectroscopy (EIS) that can be easily functionalized through microelectrodes in microfluidic devices, was introduced to monitor cell growth and division of budding yeast. Herein, a microfluidic device integrated with EIS biosensor was proposed to perform in-situ impedance measurement of yeast proliferation in single-cell resolution so as to identify the momentary events of daughter dissection from its mother. Single yeast cells were reliably immobilized at the bottleneck-like traps for continuous culturing, during which daughter cells were effectively detached from their mother cells by hydraulic shear forces. Time-lapse impedance measurement was performed every 2 min to monitor the cellular process including budding, division and dissection. By using the K-means clustering algorithm to analyze a self-defined parameter "Dissection Indicator," to our knowledge for the first time, the momentary event of a daughter removing from its mother cell was accurately extracted from EIS signals. link2 Thus, the identification of daughter dissection events based on impedance sensing technology has been validated. With further development, this microfluidic device integrated with electrical impedance biosensor holds promising applications in high-throughput, real-time and label-free analysis of budding yeast aging and RLS.In native skeletal muscle, densely packed myofibers exist in close contact with surrounding motor neurons and blood vessels, which are embedded in the fibrous connective tissue. In comparison to conventional two-dimensional (2D) cultures, the three-dimensional (3D) engineered skeletal muscle models allow structural and mechanical resemblance with native skeletal muscle tissue by providing geometric confinement and physiological matrix stiffness to the cells. In addition, various external stimuli applied to these models enhance muscle maturation along with cell-cell and cell-extracellular matrix interaction. Therefore, 3D in vitro muscle models can adequately recapitulate the pathophysiologic events occurring in tissue-tissue interfaces inside the native skeletal muscle such as neuromuscular junction. Moreover, 3D muscle models can induce pathological phenotype of human muscle dystrophies such as Duchenne muscular dystrophy by incorporating patient-derived induced pluripotent stem cells and human primary cells. In this review, we discuss the current biofabrication technologies for modeling various skeletal muscle tissue-related diseases (i.e., muscle diseases) including muscular dystrophies and inflammatory muscle diseases. In particular, these approaches would enable the discovery of novel phenotypic markers and the mechanism study of human muscle diseases with genetic mutations.One of the main advantages of a cell-free synthesis system is that the synthetic machinery of cells can be modularized and re-assembled for desired purposes. In this study, we attempted to combine the translational activity of Escherichia coli extract with a heme synthesis pathway for the functional production of horseradish peroxidase (HRP). We first optimized the reaction conditions and the sequence of template DNA to enhance protein expression and folding. The reaction mixture was then supplemented with 5-aminolevulinic acid synthase to facilitate co-synthesis of the heme prosthetic group from glucose. Combining the different synthetic modules required for protein synthesis and cofactor generation led to successful production of functional HRP in a cell-free synthesis system.Adipose tissue-derived microvascular fragments (MVF) represent effective vascularization units for tissue engineering. Most experimental studies exclusively use epididymal fat tissue of male donor mice as a source for MVF isolation. However, in future clinical practice, MVF-based approaches may be applied in both male and female patients. Therefore, we herein compared the vascularization capacity of MVF isolated from the epididymal and peri-ovarian fat tissue of male and female donor mice. Freshly isolated MVF from male and female donors did not differ in their number, length distribution, viability and cellular composition. After their assembly into spheroids, they also exhibited a comparable in vitro sprouting activity. Moreover, they could be seeded onto collagen-glycosaminoglycan matrices, which were implanted into full-thickness skin defects within mouse dorsal skinfold chambers. Repetitive intravital fluorescence microscopy as well as histological and immunohistochemical analyses revealed a comparable vascularization and incorporation of implants seeded with MVF of male and female origin. Taken together, these findings demonstrate that the vascularization capacity of MVF is not gender-specific.Sensitive detection of biological events is a goal for the design and characterization of sensors that can be used in vitro and in vivo. One important second messenger is Ca++ which has been a focus of using genetically encoded Ca++ indicators (GECIs) within living cells or intact organisms in vivo. An ideal GECI would exhibit high signal intensity, excellent signal-to-noise ratio (SNR), rapid kinetics, a large dynamic range within relevant physiological conditions, and red-shifted emission. Most available GECIs are based on fluorescence, but bioluminescent GECIs have potential advantages in terms of avoiding tissue autofluorescence, phototoxicity, photobleaching, and spectral overlap, as well as enhancing SNR. Here, we summarize current progress in the development of bioluminescent GECIs and introduce a new and previously unpublished biosensor. Because these biosensors require a substrate, we also describe the pros and cons of various substrates used with these sensors. The novel GECI that is introduced here is called CalBiT, and it is a Ca++ indicator based on the functional complementation of NanoBiT which shows a high dynamic change in response to Ca++ fluxes. Here, we use CalBiT for the detection of Ca++ fluctuations in cultured cells, including its ability for real-time imaging in living cells.Pandemics caused by viruses have threatened lives of thousands of people. Understanding the complicated process of viral infection provides significantly directive implication to epidemic prevention and control. Viral infection is a complex and diverse process, and substantial studies have been complemented in exploring the biochemical and molecular interactions between viruses and hosts. However, the physical microenvironment where infections implement is often less considered, and the role of mechanobiology in viral infection remains elusive. link3 Mechanobiology focuses on sensation, transduction, and response to intracellular and extracellular physical factors by tissues, cells, and extracellular matrix. The intracellular cytoskeleton and mechanosensors have been proven to be extensively involved in the virus life cycle. Furthermore, innovative methods based on micro- and nanofabrication techniques are being utilized to control and modulate the physical and chemical cell microenvironment, and to explore how extracellular factors including stiffness, forces, and topography regulate viral infection. Our current review covers how physical factors in the microenvironment coordinate viral infection. Moreover, we will discuss how this knowledge can be harnessed in future research on cross-fields of mechanobiology and virology.Saposhnikovia divaricata is derived from the dried roots of Saposhnikovia divaricata (Turcz.) Schischk and used as a Chinese herbal medicine for treating respiratory, immune, and nervous system diseases. The continuously increasing market demand for traditional Chinese medicine requires the commercial cultivation of Saposhnikovia divaricata using standardized methods and high yielding genotypes, such as double-headed root plants, for achieving consistent quality and a reliable supply. In this study, we aimed to identify the quantitative differences in chromone, a precursor of flavonoid biosynthesis, between plants with single- and double-headed roots using high-performance liquid chromatography and further explore the two phenotypes at the transcriptomic and metabolomic levels. Our results showed that the chromone content was significantly higher in plants with double-headed roots than in those with single-headed roots. Transcriptomic analysis revealed six significantly differentially expressed genes between the two phenotypes, including five key genes in the flavonoid biosynthesis pathway (4-coumarate-CoA ligase, chalcone synthase 1, vinorine synthase, chalcone-flavonone isomerase 1, and flavanone 3 beta-hydroxylase) and one key gene in the abscisic acid biosynthetic pathway (zeaxanthin epoxidase). Moreover, metabolomic analysis showed that the 126 differentially expressed metabolites were mainly enriched in the biosynthesis of secondary metabolites and phytohormones. Overall, our results suggest that plants with double-headed roots have higher medicinal value than those with single-headed roots, probably due to differences in various biosynthetic pathways. These data might help select the genotypes with superior yield and therapeutic properties.The nicotine from tobacco stalk showed obvious inhibitory effect on the activity of cellulase and fermentability of microorganisms, which seriously hinders the utilization of tobacco stalk. Dilute sulfuric acid presoak of tobacco stalk was used to enhance the performance of instant catapult steam explosion (ICSE) for tobacco stalk pretreatment. The presoak was beneficial to break the recalcitrant structure of tobacco stalk, reduce nicotine content to relieve the inhibition on the activity of cellulase and metabolism of microorganisms, and promote the performance of enzymatic hydrolysis and ethanol fermentation. The optimized 0.8% sulfuric acid (w/w) presoak-integrated ICSE pretreatment resulted in 85.54% nicotine removal from tobacco stalk; meanwhile, the total sugar concentration from enzymatic hydrolysis of pretreated tobacco stalk increased from 33.40 to 53.81 g/L (the ratio of dry tobacco stalk to water was 18, w/w), ethanol concentration increased 103.36% from 5.95 to 12.10 g/L in flask, compared with separate ICSE pretreatment.

Autoři článku: Stallingskoch1153 (Boyd Martin)