Stallingsbendsen8505

Z Iurium Wiki

Detection of the protein antigens in immunoblots prepared with immunoprecipitated protein antigens can be affected by the presence of high amounts of the immunoprecipitating antibodies. When it is not possible to use the immunoprecipitating antibodies and the primary antibodies raised in different species, this protocol provides a convenient and inexpensive alternative to achieve optimal detection of immunoprecipitated protein antigens. In this protocol, a nitrocellulose or polyvinylidene fluoride membrane containing immunoprecipitated protein samples is rinsed with ultrapure H2O after the transfer of proteins and detection of the total proteins using Ponceau S dye (optional). Blocking solution is applied to the membrane, and the membrane is incubated and then rinsed off (optional) before addition of the primary antibody labeled with biotin. After washing, the membrane is incubated with enzyme- or fluorochrome-labeled avidin for detection.Immunoprecipitated proteins can be readily analyzed by immunoblotting. Proteins can be efficiently eluted from the Protein A or similar beads by addition of the SDS-PAGE sample loading buffer and heating at 95°C. This elution procedure will also remove the capturing antibody from the beads unless the antibody was cross-linked to the beads. Alternatively, the immunoprecipitated proteins as well as non-cross-linked capture antibodies can be eluted from the beads using low (2.1-2.8) or high (10-11) pH conditions. Incubation of the immunoprecipitates with the excess of the competing peptide allows the elution of the captured proteins without contamination of the sample with the antibodies present in the immunoprecipitates. However, this option is not always available, and the cost of competing peptide can be prohibitive for the routine immunoprecipitation/immunoblotting experiments. In this protocol, elution of the immunoprecipitated proteins from the beads is performed by mixing Protein A or similar beads containing the immunoprecipitated protein antigens of interest with SDS-PAGE sample buffer and boiling to prepare samples for protein gel electrophoresis.RNAs are trafficked and localized with exquisite precision inside the cell. Studies of candidate messenger RNAs have shown the vital importance of RNA subcellular location in development and cellular function. New sequencing- and imaging-based methods are providing complementary insights into subcellular localization of RNAs transcriptome-wide. APEX-seq and ribosome profiling as well as proximity-labeling approaches have revealed thousands of transcript isoforms are localized to distinct cytotopic locations, including locations that defy biochemical fractionation and hence were missed by prior studies. Sequences in the 3' and 5' untranslated regions (UTRs) serve as "zip codes" to direct transcripts to particular locales, and it is clear that intronic and retrotransposable sequences within transcripts have been co-opted by cells to control localization. Molecular motors, nuclear-to-cytosol RNA export, liquid-liquid phase separation, RNA modifications, and RNA structure dynamically shape the subcellular transcriptome. Location-based RNA regulation continues to pose new mysteries for the field, yet promises to reveal insights into fundamental cell biology and disease mechanisms.It is now clear that cells form a wide collection of large RNA-protein assemblies, referred to as RNP granules. RNP granules exist in bacterial cells and can be found in both the cytosol and nucleus of eukaryotic cells. Recent approaches have begun to define the RNA and protein composition of a number of RNP granules. Herein, we review the composition and assembly of RNP granules, as well as how RNPs are targeted to RNP granules using stress granules and P-bodies as model systems. Taken together, these reveal that RNP granules form through the summative effects of a combination of protein-protein, protein-RNA, and RNA-RNA interactions. Similarly, the partitioning of individual RNPs into stress granules is determined by the combinatorial effects of multiple elements. Thus, RNP granules are assemblies generally dominated by combinatorial effects, thereby providing rich opportunities for biological regulation.Isothermal, cell-free, synthetic biology-based approaches to pathogen detection leverage the power of tools available in biological systems, such as highly active polymerases compatible with lyophilization, without the complexity inherent to live-cell systems, of which Nucleic Acid Sequence Based Amplification (NASBA) is well known. Despite the reduced complexity associated with cell-free systems, side reactions are a common characteristic of these systems. As a result, these systems often exhibit false positives from reactions lacking an amplicon. Here we show that the inclusion of a DNA duplex lacking a promoter and unassociated with the amplicon, fully suppresses false positives, enabling a suite of fluorescent aptamers to be used as NASBA tags (Apta-NASBA). Apta-NASBA has a 1 pM detection limit and can provide multiplexed, multicolor fluorescent readout. Furthermore, Apta-NASBA can be performed using a variety of equipment, for example a fluorescence microplate reader, a qPCR instrument, or an ultra-low-cost Raspberry Pi-based 3D-printed detection platform employing a cell phone camera module, compatible with field detection.Compartmentalization of macromolecules is a ubiquitous molecular mechanism that drives numerous cellular functions. Appropriate organization of enzymes in space and time enables the precise transmission and integration of intracellular signals. Molecular scaffolds constrain signaling enzymes to influence the regional modulation of these physiological processes. Mitochondrial targeting of protein kinases and protein phosphatases provides a means to locally control the phosphorylation status and action of proteins on the surface of this organelle. Dual-specificity A-kinase anchoring protein 1 (dAKAP1) is a multivalent binding protein that targets protein kinase A (PKA), RNAs and other signaling enzymes to the outer mitochondrial membrane. Many AKAPs recruit a diverse set of binding partners that coordinate a broad range of cellular process. Here, results of mass spectrometry and biochemical analyses reveal that dAKAP1 anchors additional components including the ribonucleoprotein granule components La-related protein 4 (LARP4) and polyadenylate-binding protein 1 (PABPC1). Local translation of mRNAs at organelles is a means to spatially control the synthesis of proteins. RNA-Seq data demonstrate that dAKAP1 binds mRNAs encoding proteins required for mitochondrial metabolism, including succinate dehydrogenase. Functional studies suggest that loss of dAKAP1-RNA interactions reduces mitochondrial electron transport chain activity. Hence, dAKAP1 plays a previously unappreciated role as a molecular interface between second messenger signaling and local protein synthesis machinery.Aortic dissection is a life-threatening aortopathy involving separation of the aortic wall, whose underlying mechanisms are still incompletely understood. Epidemiological evidence suggests that unsaturated fatty acids improve cardiovascular health. Here, using quantitative RT-PCR, histological analyses, magnetic cell sorting and flow cytometry assays, and mass spectrometry-based lipidomics, we show that the activity of a lipid-metabolizing enzyme, secreted phospholipase A2 group V (sPLA2-V), protects against aortic dissection by endogenously mobilizing vasoprotective lipids. Global and endothelial cell-specific sPLA2-V-deficient mice frequently developed aortic dissection shortly after infusion of angiotensin II (AT-II). We observed that in the AT-II-treated aorta, endothelial sPLA2-V mobilized oleic and linoleic acids, which attenuated endoplasmic reticulum stress, increased the expression of lysyl oxidase, and thereby stabilized the extracellular matrix in the aorta. Of note, dietary supplementation with oleic or linoleic acid reversed the increased susceptibility of sPLA2-V-deficient mice to aortic dissection. These findings reveal an unexplored functional link between sPLA2-driven phospholipid metabolism and aortic stability, possibly contributing to the development of improved diagnostic and/or therapeutic strategies for preventing aortic dissection.Aortic carboxypeptidase-like protein (ACLP) is a collagen-binding extracellular matrix (ECM) protein that has important roles in wound healing and fibrosis. ACLP contains thrombospondin repeats, a collagen-binding discoidin domain, and a catalytically inactive metallocarboxypeptidase domain. Recently, mutations in the ACLP-encoding gene, AE-binding protein 1 (AEBP1), have been discovered, leading to the identification of a new variant of Ehlers-Danlos syndrome (EDS) causing connective tissue disruptions in multiple organs. Currently, little is known about the mechanisms of ACLP secretion or the role of posttranslational modifications in these processes. We show here that the secreted form of ACLP contains N-linked glycosylation and that inhibition of glycosylation results in its intracellular retention. Using site-directed mutagenesis, we determined that glycosylation of Asn-471 and Asn-1030 is necessary for ACLP secretion and identified a specific N-terminal proteolytic ACLP fragment. To determine the contribution of secreted ACLP to ECM mechanical properties, we generated and mechanically tested wet-spun collagen ACLP composite fibers, finding that ACLP enhances the modulus (or stiffness), toughness, and tensile strength of the fibers. Some AEBP1 mutations were null alleles, whereas others resulted in expressed proteins. We tested the hypothesis that a recently discovered 40-amino-acid mutation and insertion in the ACLP discoidin domain regulates collagen binding and assembly. ACSS2 inhibitor research buy Interestingly, we found that this protein variant is retained intracellularly and induces endoplasmic reticulum (ER) stress identified with an XBP1-based ER stress reporter. Our findings highlight the importance of N-linked glycosylation of ACLP for its secretion and contribute to our understanding of ACLP-dependent disease pathologies.Intracellular collagen assembly begins with the oxidative folding of ~30-kDa C-terminal propeptide (C-Pro) domains. Folded C-Pro domains then template the formation of triple helices between appropriate partner strands. Numerous C-Pro missense variants that disrupt or delay triple-helix formation are known to cause disease, but our understanding of the specific proteostasis defects introduced by these variants remains immature. Moreover, it is unclear whether or not recognition and quality control of misfolded C-Pro domains is mediated by recognizing stalled assembly of triple-helical domains or by direct engagement of the C-Pro itself. Herein, we integrate biochemical and cellular approaches to illuminate the proteostasis defects associated with osteogenesis imperfecta-causing mutations within the collagen-α2(I) C-Pro domain. We first show that "C-Pro-only" constructs recapitulate key aspects of the behavior of full-length Colα2(I) constructs. Of the variants studied, perhaps the most severe assembly defects are associated with C1163R C-Proα2(I), which is incapable of forming stable trimers and is retained within cells. We find that the presence or absence of an unassembled triple-helical domain is not the key feature driving cellular retention versus secretion. Rather, the proteostasis network directly engages the misfolded C-Pro domain itself to prevent secretion and initiate clearance. Using MS-based proteomics, we elucidate how the endoplasmic reticulum (ER) proteostasis network differentially engages misfolded C1163R C-Proα2(I) and targets it for ER-associated degradation. These results provide insights into collagen folding and quality control with potential to inform the design of proteostasis network-targeted strategies for managing collagenopathies.

Autoři článku: Stallingsbendsen8505 (Foldager Perkins)