Stagemcpherson0960
Cyclodextrins (CDs) are used as drug delivery agents. In this study, we examined whether CDs have an inflammatory effect on endothelial cells. First, we found that β-CD promoted cell proliferation in bovine aortic endothelial cells and elevated nitric oxide (NO) production through dephosphorylation of threonine-495 (T-495) in endothelial nitric oxide synthetase (eNOS). Dephosphorylation of T-495 is known to activate eNOS. Phosphorylation of T-495 was found to be catalyzed by protein kinase Cε (PKCε). We then found that β-CD inhibits binding of PKCε to diacylglycerol (DAG) via formation of a β-CD-DAG complex, indicating that β-CD inactivates PKCε. Furthermore, β-CD controls activation of PKCε by reducing the recruitment of PKCε into the plasma membrane. Finally, β-CD inhibits expression of intercellular and vascular cell adhesion molecule-1 by increasing NO via control of PKCε/eNOS and suppression of THP-1 cell adhesion to endothelial cells. These findings imply that β-CD plays an important role in anti-inflammatory processes.Mammals have two insulin-like growth factors (IGF) that are key mediators of somatic growth, tissue differentiation, and cellular responses to stress. Thus, the mechanisms that regulate the bioavailability of IGFs are important in both normal and aberrant development. IGF-I levels are primarily controlled via the growth hormone-IGF axis, in response to nutritional status, and also reflect metabolic diseases and cancer. One mechanism that controls IGF bioavailablity is the binding of circulating IGF to a number of binding proteins that keep IGF in a stable, but receptor non-binding state. However, even before IGF is released from the cells that produce it, it undergoes an obligatory association with a ubiquitous chaperone protein, GRP94. This binding is required for secretion of a properly folded, mature IGF. This chapter reviews the known aspects of the interaction and highlights the specificity issues yet to be determined. The IGF-GRP94 interaction provides a potential novel mechanism of idiopathic short stature, involving the obligatory chaperone and not just IGF gene expression. It also provides a novel target for cancer treatment, as GRP94 activity can be either inhibited or enhanced.Circoviruses infect a variety of animal species and have small (~1.8-2.2 kb) circular single-stranded DNA genomes. Recently a penguin circovirus (PenCV) was identified associated with an Adélie Penguin (Pygoscelis adeliae) with feather disorder and in the cloacal swabs of three asymptomatic Adélie Penguins at Cape Crozier, Antarctica. A total of 75 cloacal swab samples obtained from adults and chicks of three species of penguin (genus Pygoscelis) from seven Antarctic breeding colonies (South Shetland Islands and Western Antarctic Peninsula) in the 2015-2016 breeding season were screened for PenCV. We identified new variants of PenCV in one Adélie Penguin and one Chinstrap Penguin (Pygoscelis antarcticus) from Port Charcot, Booth Island, Western Antarctic Peninsula, a site home to all three species of Pygoscelid penguins. These two PenCV genomes (length of 1986 nucleotides) share > 99% genome-wide nucleotide identity with each other and share ~87% genome-wide nucleotide identity with the PenCV sequences described from Adélie Penguins at Cape Crozier ~4400 km away in East Antarctica. We did not find any evidence of recombination among PenCV sequences. This is the first report of PenCV in Chinstrap Penguins and the first detection outside of Ross Island, East Antarctica. Given the limited knowledge on Antarctic animal viral diversity, future samples from Antarctic wildlife should be screened for these and other viruses to determine the prevalence and potential impact of viral infections.Physical frailty and sarcopenia (PF&S) recapitulates all the hallmarks of aging and has become a focus in geroscience. Factors spanning muscle-specific processes (e.g., mitochondrial dysfunction in skeletal myocytes) to systemic changes (e.g., inflammation and amino acid dysmetabolism) have been pinpointed as possible contributors to PF&S pathophysiology. Tacrolimus However, the search for PF&S biomarkers allowing the early identification and tracking of the condition over time is ongoing. This is mainly due to the phenotypic heterogeneity of PF&S, its unclear pathophysiology, and the frequent superimposition of other age-related conditions. Hence, presently, the identification of PF&S relies upon clinical, functional, and imaging parameters. The adoption of multi-marker approaches (combined with multivariate modeling) has shown great potential for addressing the complexity of PF&S pathophysiology and identifying candidate biological markers. Well-designed longitudinal studies are necessary for the incorporation of reliable biomarkers into clinical practice and for unveiling novel targets that are amenable to interventions.Copper nanoparticles (CuNPs) stabilized by quaternary ammonium salts are well known as antimicrobial agents. The aim of this work was to study the feasibility of the inclusion of CuNPs in nanovesicular systems. Liposomes are nanovesicles (NVs) made with phospholipids and are traditionally used as delivery vehicles because phospholipids favor cellular uptake. Their capacity for hydrophilic/hydrophobic balance and carrier capacity could be advantageous to prepare novel hybrid nanostructures based on metal NPs (Me-NPs). In this work, NVs were loaded with CuNPs, which have been reported to have a biofilm inhibition effect. These hybrid materials could improve the effect of conventional antibacterial agents. CuNPs were electro-synthesized by the sacrificial anode electrolysis technique in organic media and characterized in terms of morphology through transmission electron microscopy (TEM). The NVs were prepared by the thin film hydration method in aqueous media, using phosphatidylcholine (PC) and cholesterol as a membrane stabilizer. The nanohybrid systems were purified to remove non-encapsulated NPs. The size distribution, morphology and stability of the NV systems were studied. Different quaternary ammonium salts in vesicular systems made of PC were tested as stabilizing surfactants for the synthesis and inclusion of CuNPs. The entrapment of charged metal NPs was demonstrated. NPs attached preferably to the membrane, probably due to the attraction of their hydrophobic shell to the phospholipid bilayers. The high affinity between benzyl-dimethyl-hexadecyl-ammonium chloride (BDHAC) and PC allowed us to obtain stable hybrid NVs c.a. 700 nm in diameter. The stability of liposomes increased with NP loading, suggesting a charge-stabilization effect in a novel antibiofilm nanohybrid material.