Stackhuff2677
Ultrasound-guided needle placement is performed in many clinical applications, including biopsies, treatment injections and anesthesia. Despite the wide range and long history of this technique, an ongoing challenge is needle visibility in ultrasound. A robust technique to enhance ultrasonic needle visibility, especially for steeply inserted hand-held needles, and while maintaining clinical utility requirements is needed.
Ultrasound-guided needle placement is performed in many clinical applications, including biopsies, treatment injections and anesthesia. Despite the wide range and long history of this technique, an ongoing challenge is needle visibility in ultrasound. A robust technique to enhance ultrasonic needle visibility, especially for steeply inserted hand-held needles, and while maintaining clinical utility requirements is needed.Upland rice is an ecotype crop resulting from the long-term domestication and evolution of rice in dry land without a water layer. Generally, the stems and leaves are thick and luxuriant, while the leaves also typically broad and light. The root system is developed with abundant root hair, and the osmotic pressure of the root and cell juice concentration in the leaves is high, while this plant is drought-resistant, heat-resistant, and water absorbent. This study aims to reveal the "core flora" of the endophytes in upland rice seeds by examining their diversity and community structures. It further intends to reveal the impact of the soil environment on the formation of endophyte community structures in upland rice seeds by comparing the environmental soil microorganisms in upland rice habitats. In this study, high-throughput sequencing technology based on the Illumina Hiseq 2500 platform was used to investigate the structure and diversity of endophytic bacterial communities using upland rice varieties collected from different locations and soil samples from unified planting sites as materials. Here, 42 endophytic OTUs were found to coexist in the 14 samples. At the phylum level, the first dominant phyla in all the samples were Proteobacteria (93.81-99.99%). At the genus level, Pantoea (8.77-87.77%), Pseudomonas (1.15-61.58%), Methylobacterium (0.40-4.64%), Sphingomonas (0.26-3.85%), Microbacterium (0.01-4.67%) and Aurantimonas (0.04-4.34%), which represent the core microflora in upland rice seeds, served as the dominant genera that coexisted in all the upland rice seeds tested. This study significant for the isolation, screening, functional evaluation, and re-action of various functional microorganisms in upland rice to improve its agronomic traits. It also provides a specific reference for the interaction between microorganisms and plants.In the present study, lactic acid bacteria were isolated from table olive in Morocco. Selleckchem RU.521 Random Amplified Polymorphic DNA fingerprinting with (GTG)'(5) primer revealed a remarquable variability within isolates. According to the molecular identification, Enterococcus faecium was the most dominant species isolated with 32 strains (84.21%), followed by 4 strains of Weissella paramesenteroides (10.52%), 1 strain of Leuconostoc mesenteroides (2.63%) and Lactobacillus plantarum (2.63%). All of the strains that were identified showed occurrence of more than one bacteriocin-encoding gene. Based on the results obtained, L. plantarum 11 showed a mosaic of loci coding for nine bacteriocins (pln A, pln D, pln K, pln G, pln B, pln C, pln N, pln J, ent P). A phenotypic and genotypic antibiotic resistance was also examined. L. plantarum 11, L. mesenteroides 62, W. paramesenteroides 9 and W. paramesenteroides 36 as well as all the strains of E. faecium were susceptible to ampicillin, clindamycin and teicoplanin; however, isolates showed a resistance profile against tetracycline and erythromycin. Except E. faecium 114, E. faecium 130 and L. plantarum 11, no antibiotic resistance genes were detected in all of the strains, which might be due to resistances resulting from non-transferable or non-acquired resistance determinants (intrinsic mechanism).Polyhydroxyalkanoates (PHAs) are biodegradable polyesters accumulated in a wide variety of microorganisms as intracellular carbon and energy storage compounds. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most valuable biopolymers because of its superior mechanical properties. Here, we developed a bioprocess utilizing recombinant Bacillus megaterium strain for PHBV over-production from glucose, without any precursor addition. PHA production was performed in a controlled bioreactor by batch and fed-batch modes using wild-type B. megaterium and rec-B. megaterium cells overexpressing the native phaC gene. The effect of oxygen transfer rate on biomass formation and PHA accumulation was also investigated, under different dissolved oxygen levels. Structural and thermal properties of PHA were characterized by GC-FID, 1H-NMR, TGA and DSC analyses. Significantly, the copolymer produced from glucose as the carbon source in rec-B. megaterium was composed of 58 mol% of 3-hydroxyvalerate monomers. After 66 h, rec-B. megaterium cells in fed-batch fermentation with a pre-determined growth rate µ0 = 0.1 h-1 produced the highest CDW (7.7 g L-1) and PHA concentration (6.1 g L-1). Moreover, an exponential glucose feeding profile resulted in 2.2-fold increase in PHA yield compared to batch cultivation. Overall, this study paves the way to an enhanced biopolymer production process in B. megaterium cells, where the highest product yield on cell was obtained as YP/X = 0.8 g g-1.A hybrid neural model (HNM) and particle swarm optimization (PSO) was used to optimize ethanol production by a flocculating yeast, grown on cashew apple juice. HNM was obtained by combining artificial neural network (ANN), which predicted reaction specific rates, to mass balance equations for substrate (S), product and biomass (X) concentration, being an alternative method for predicting the behavior of complex systems. ANNs training was conducted using an experimental set of data of X and S, temperature and stirring speed. The HNM was statistically validated against a new dataset, being capable of representing the system behavior. The model was optimized based on a multiobjective function relating efficiency and productivity by applying the PSO. Optimal estimated conditions were S0 = 127 g L-1, X0 = 5.8 g L-1, 35 °C and 111 rpm. In this condition, an efficiency of 91.5% with a productivity of 8.0 g L-1 h-1 was obtained at approximately 7 h of fermentation.