Spiveyglud2724

Z Iurium Wiki

ses were recorded among fish in all groups over the duration of the experiment.Accurate and fast liver segmentation remains a challenging and important task for clinicians. Segmentation algorithms are slow and inaccurate due to noise and low quality images in computed tomography (CT) abdominal scans. Chan-Vese is an active contour based powerful and flexible method for image segmentation due to superior noise robustness. However, it is quite slow due to time-consuming partial differential equations, especially for large medical datasets. This can pose a problem for a real-time implementation of liver segmentation and hence, an efficient parallel implementation is highly desirable. Another important aspect is the contrast of CT liver images. Liver slices are sometimes very low in contrast which reduces the overall quality of liver segmentation. Hence, we implement cross-modality guided liver contrast enhancement as a pre-processing step to liver segmentation. GPU implementation of Chan-Vese improves average speedup by 99.811 (± 7.65) times and 14.647 (± 1.155) times with and without enhancement respectively in comparison with the CPU. Average dice, sensitivity and accuracy of liver segmentation are 0.656, 0.816 and 0.822 respectively on the original liver images and 0.877, 0.964 and 0.956 respectively on the enhanced liver images improving the overall quality of liver segmentation.Recently, there has been a demand for the replacement of chemical sunscreens with natural compounds that could prevent or restore UV-induced skin damage. Here, we investigated the photoprotective influence of the Melaleuca leucadendron ethanolic flower extract (EEMec) on factors involved in cellular and molecular UVB-induced oxidative stress in human skin keratinocytes (HaCaT). The phytochemical constituents, antioxidant potential by DPPH assay, content of total phenolic and flavonoid compounds in EEMec were evaluated. HaCaT cells were treated with EEMec followed by irradiation with UVB. CAT activity; GSH and ROS levels; and SOD1, GPx, CAT and COX-2 expression assays were employed to verify the oxidative stress, as well as EEMec effect on transmembrane transport, and pro-inflammatory and pro-apoptotic protein expression. EEMec reverted the viability loss of HaCaT cells after irradiation with UVB, exhibited significant antioxidant capacity and free radical scavenging activity in vitro, inhibited COX-2 expression and ensure protection of DNA-damage. EEMec shown a great photoprotective property to prevent keratinocytes damage induced by UV radiation and, thus a candidate potential to application as an adjuvant in sunscreen formulations as a strategy to reduce risk of sunburn and prevent skin diseases associated with UV-induced inflammation and cancer.Programmed cell death factor 4 (PDCD4) is originally described as a tumor suppressor gene that exerts antineoplastic effects by promoting apoptosis and inhibiting tumor cell proliferation, invasion, and metastasis. Several investigations have probed the aberrant expression of PDCD4 with the progression of metabolic diseases, such as polycystic ovary syndrome (PCOS), obesity, diabetes, and atherosclerosis. It has been ascertained that PDCD4 causes glucose and lipid metabolism disorders, insulin resistance, oxidative stress, chronic inflammatory response, and gut flora disorders to regulate the progression of metabolic diseases. This review aims to summarize the latest researches to uncover the structure, expression regulation, and biological functions of PDCD4 and to elucidate the regulatory mechanism of the development of tumors and metabolic diseases. This review has emphasized the understanding of the PDCD4 role and to provide new ideas for the research, diagnosis, and treatment of tumors and metabolic diseases.Doxorubicin (DOX) is a widely used antitumor drug that causes severe neurotoxicity in patients. Diallyl trisulfide (DATS) is an organosulfur compound with established potent antioxidant and anti-inflammatory properties. learn more Herein, we investigated the neuroprotective efficacy of DATS in preventing DOX-induced neurotoxicity in a rat model. Specifically, DATS (40 mg/kg) was administered to rats 24 h after DOX treatment, once a week for 8 weeks. Our results showed that DATS treatment led to a decrease in plasma levels of tumor necrosis factor-alpha (TNF-α) induced by DOX. DATS restored cerebral cortex and hippocampus histopathological architecture and neuronal loss. Immunohistochemical staining indicated that DATS decreased the expression of glial fibrillar acidic protein (GFAP) in DOX treated rats. Components of stress-related inflammatory proteins (TNF-α, phospho nuclear factor kappa B (NF-κB), inducible nitricoxide synthase (iNOS) and cyclooxygenase-2 (COX-2)) were all significantly increased in the DOX group, in comparison with the control group, whereas they were decreased after DATS treatment. In addition, the mRNA of antioxidant enzymes (superoxide dismutase 2 (SOD2), catalase, glutathione peroxidase 1, 4 (GPx1 and GPx4)) and antioxidant proteins (heme oxygenase-1 (HO-1), superoxide dismutase 1, 2 (SOD1 and SOD2), Γ-glutamylcysteine synthase (Γ-GCSc)) were markedly increased in DOX group compared with the control group, which were significantly attenuated by DATS treatment. The upregulation of antioxidants enzymes in DOX group was probably a compensatory effect against elevated oxidative stress induced by DOX. DATS treatment could ameliorate this oxidative stress in brain. Our results suggested that DATS has potential clinical applications in the prevention of DOX-induced neurotoxicity by ameliorating inflammatory insults and oxidative stress.20-hydroxyecdysone (20E), a steroidal prohormone, is secreted from the prothoracic glands. While 20E has been shown to have neuroprotective effects in Parkinson's disease (PD) models in vitro, its effects have not yet been examined in vivo. We sought to assess the behavioral and mechanistic effects of 20E on MPTP-induced toxicity in mice. To this end, we used behavioral tests, stereological analyses of dopaminergic neurons by tyrosine hydroxylase immunohistochemistry, and assessments of apoptotic mechanisms, focusing on Nrf2 signaling through Western blotting and ELISA assays. A 20E treatment protected against MPTP-induced motor incoordination, postural imbalance, and bradykinesia, and significantly reduced dopaminergic neuronal loss in the substantia nigra pars compacta (SNpc) and the striatum (ST). It also attenuated dopamine deficiency in the ST, modulated levels of antioxidative enzymes superoxide dismutase, catalase, and glutathione in the SNpc, increased the Bcl-2/Bax ratio, and inhibited cytosolic cytochrome c release and caspase-9, -7, and -3 activity in the SNpc.

Autoři článku: Spiveyglud2724 (Tranberg Carr)