Sonnebek6109

Z Iurium Wiki

Little is known about the fate of oil spills in rivers. Hyporheic flows of water through river sediments exchange surface and groundwater and create upwelling and downwelling zones that are important for fish spawning and embryo development. Risk assessments of oil spills to rivers do not consider the potential for hyporheic flows to carry oil droplets into sediments and the potential for prolonged exposure of fish to trapped oil. This project assessed whether oil droplets in water flowing through gravel will be trapped and whether hydrocarbons partitioning from trapped oil droplets are bioavailable to fish. Columns packed with gravel were injected with oil-in-water dispersions prepared with light crude, medium crude, diluted bitumens, and heavy fuel oil to generate a series of oil droplet loadings. The concentrations of oil trapped in the gravel increased with oil loading and viscosity. When the columns were perfused with clean water, oil concentrations in column effluents decreased to the detection limit within the first week of water flow, with sporadically higher concentrations associated with oil droplet release. Despite the low concentrations of hydrocarbons measured in column effluent, hydrocarbons were bioavailable to juvenile rainbow trout (Oncorhynchus mykiss) for more than three weeks of water flow, as indicated by strong induction of liver ethoxyresorufin-o-deethylase activity. These findings indicate that ecological risk assessments and spill response should identify and protect areas in rivers sensitive to contaminant trapping.Total concentration and chemical partitioning of heavy metals are commonly used in environmental quality assessment; however, their comparability and comprehensive application are far less discussed. Herein, bioavailability, pollution and eco-risk of As, Cd, Cr, Cu, Ni, Pb and Zn in surface sediments of Erhai Lake were evaluated referring to multiple indices following the experimental methods of complete digestion, optimized Community Bureau of Reference (BCR) and 1.0 M HCl extractions. Results of bioavailability for most metals were similar and comparable from BCR and HCl extractions. While bioavailable concentrations of Cd and Pb from HCl extraction were significantly (p less then 0.01) lower than those from BCR extraction, indicating BCR extraction is more efficient. Results of enrichment factor (EF) and concentration enrichment ratio (CER) suggested that Cd was the highest polluted element followed by As, Pb and Zn, whereas Cr, Cu and Ni were mainly natural in origin. selleckchem Similar concentrations of anthropogenic As from EF and CER assessments indicated anthropogenic As mainly existed in bioavailable form. However, anthropogenic Cd, Pb and Zn existed in both bioavailable and residue forms, resulting in the underestimation of anthropogenic metals by the CER assessment. The sediment quality guidelines (SQGs), potential ecological risk index (Er) and risk assessment code (RAC) showed inconsistent eco-risks for each of the metals except Cd. Combining pollution level and chemical partitioning with SQGs, Er and RAC assessments, high eco-risk of Cd, moderate eco-risk of As and Pb, and low eco-risk of Cr, Cu, Ni and Zn were graded. Our study highlights the limitation of single index and the necessity of integrating multiple indices following total concentration and chemical partitioning in metal pollution and eco-risk assessments.Noble metal-based nanomaterials (NMNs), such as platinum nanoparticles (Pt@NPs) and palladium nanoparticles (Pd@NPs), are increasingly being used as antibacterial agents. However, little information is available on bacterial resistance to NMNs. In this study, owing to their oxidase-like and peroxidase-like properties, both Pt@NPs and Pd@NPs induce reactive oxygen species (ROS) and manifest antibacterial activities 6.25 μg/mL of either Pt@NPs or Pd@NPs killed >50% of Staphylococcus aureus strain ATCC29213. However, Pseudomonas aeruginosa strain PAO1 completely resisted 12.5 μg/mL of Pt@NPs and 6.25 μg/mL of Pd@NPs. Compared to the non-NMN groups, these NMNs promoted 2-3-fold upregulation of the quorum sensing (QS) gene lasR in strain PAO1. In fact, the lasR gene upregulation induced a 1.5-fold reduction in ROS production and increased biofilm formation by 11% (Pt@NPs) and 27% (Pd@NPs) in strain PAO1. The ΔlasR mutants (lasR gene knock out in strain PAO1), became sensitive to NMNs. The survival rates of ΔlasR mutants at 12.5 μg/mL Pt@NPs and Pd@NPs treatments were only 77% and 58%, respectively. This is the first report indicating that bacteria can resist NMNs through QS. Based on these results, evaluation of the ecological risks of using NMNs as antibacterial agents is necessary.Xenobiotics are worldwide distributed and humans are unavoidably exposed to multiple chemical compounds during life, from preconception to adulthood. The human microbiota is mainly settled during early life and modulate host health and fitness. One of the main routes for chemical exposure is by intake of contaminated food and water. Thus, the interplay between diet-xenobiotics-microbiota during pregnancy and perinatal period may have relevant consequences for infant and adult health. Maternal exposure to metal(oid)s, persistent organic pollutants, and some food additives can modify the infant's microbiota with unknown consequences for child or adult health. Toxicants' exposure may also modulate the maternal transfer of microorganisms to the progeny during birth and breastfeeding; however, scarce information is available. The rapid increase in releasing novel chemicals to the environment, the exposure to chemical mixtures, the chronic/low dose scenario, and the delay in science-stakeholders action call for novel and groundbreaking approaches to improve a comprehensive risk assessment in sensitive population groups like pregnant women and neonates, with emphasis on microbiota as modulating factor and target-organ of xenobiotic's toxicity.The aim of the current study is to evaluate different sources of body comparison (e.g., same-sex peers, models, young adult celebrities, middle-aged celebrities, older celebrities, and self-oriented body comparison to one's younger self) and their relation to body image concerns among middle-aged women. Participants were 347 middle-aged women, ages 40-63, who completed questionnaires. After controlling for multiple comparisons, results indicated that participants engaged in body comparison to same-sex peers most frequently, followed by self-oriented body comparison, compared to other sources, and in body comparison to young adult celebrities significantly less frequently than any other source. Additionally, same-sex peers body comparisons and self-oriented body comparisons were significantly associated with body image concerns above and beyond all other sources of comparison. Results highlight limitations of past research into social comparison due to the lack of consideration of the novel construct of self-oriented body comparison, which demonstrates unique linkages to body image concerns above and beyond previously established external sources.

Autoři článku: Sonnebek6109 (Guldager Holland)