Solisrask3344

Z Iurium Wiki

To engineer and screen a novel GLP-1/anti-apolipoprotein B (apoB) bifunctional fusion protein with therapeutic potential on alleviating diabetes and diabetic complication in combination with low-intensity ultrasound.

Anti-apoB antibodies were screened by phage display technology and further fused to mutated GLP-1 (7-37) via light or heavy fusion to generate bifunctional fusion protein (termed aBG). The optimal design of aBG fusion protein was further confirmed by in vitro epitope competition assay and cAMP accumulation assay. Subsequently, chronic study in DIO mice were subjected to assess the long-term efficacy of screened fusion protein.

The selected GLP-1/anti-apoB fusion protein, aBG-8, exerted either the highest binding affinities for GLP-1R and apoB, or the greatest LDL-C uptake capacity and GLP-1R activation activity. After 60-day treatment in DIO mice, aBG-8 was proved to exert the promising improvement on hyperglycemia, hyperlipidemia, and obesity in DIO mice. Furthermore, combined therapy of aBG-8 and low-intensity ultrasound could accelerate skin wound closure in diabetic mice.

A novel long-lasting bifunctional fusion molecule, aBG-8, was designed with the enormous potential on alleviating diabetes and diabetic complications in combination with low-intensity ultrasound.

A novel long-lasting bifunctional fusion molecule, aBG-8, was designed with the enormous potential on alleviating diabetes and diabetic complications in combination with low-intensity ultrasound.Perfluoropolyethers, also known as ether-PFAS, are linear or branched alkyl ether polymers, where the substituent hydrogens on the carbon atoms in the chain have been fully replaced by fluorine atoms. Some of these molecules may have a carboxylate functional group attached to one of the terminal carbon atoms to form an ether-PFAS carboxylate. Perfluoropolyethers are used as processing aids in the manufacture of various types of perfluorinated polymeric materials which are used in a variety of consumer applications. Although the physicochemical and toxicological properties of certain perfluoropolyether compounds have been extensively studied, data are relatively sparse for some members of this class of compounds. Moreover, the physicochemical, toxicokinetic, and toxicological properties of ether-PFAS as a class have not been elucidated in previous comprehensive review articles. This article reviews the nomenclature and uses of ether-PFAS and compares the physicochemical properties, toxicokinetic characteristics, apical effects in toxicological studies, and dose-response profiles across four specific ether-PFAS compounds. This comparison, including a description of identified data gaps should help to inform the design of studies to further elucidate the characteristics of ether-PFAS and to propose potential read-across assessment strategies for members of this class.The human fungal pathogen Candida albicans responds to iron deprivation by a global transcriptome reconfiguration known to be controlled by the transcriptional regulators Hap43 (also known as Cap2), Sef1, and the trimeric Hap2-Hap3-Hap5 complex. However, the relative roles of these regulators are not known. To dissect this system, we focused on the FRP1 and ACO1 genes, which are induced and repressed, respectively, under iron deprivation conditions. Chromatin immunoprecipitation assays showed that the trimeric HAP complex and Sef1 are recruited to both FRP1 and ACO1 promoters. While the HAP complex occupancy at the FRP1 promoter was Sef1-dependent, occupancy of Sef1 was not dependent on the HAP complex. Furthermore, iron deprivation elicited histone H3-Lys9 hyperacetylation and Pol II recruitment mediated by the trimeric HAP complex and Sef1 at the FRP1 promoter. In contrast, at the ACO1 promoter, the HAP trimeric complex and Hap43 promoted histone deacetylation and also limited Pol II recruitment under iron deprivation conditions. Mutational analysis showed that the SAGA subunits Gcn5, Spt7, and Spt20 are required for C. albicans growth in iron-deficient medium and for H3-K9 acetylation and transcription from the FRP1 promoter. Thus, the trimeric HAP complex promotes FRP1 transcription by stimulating H3K9Ac and Pol II recruitment and, along with Hap43, functions as a repressor of ACO1 by maintaining a deacetylated promoter under iron-deficient conditions. Thus, a regulatory network involving iron-responsive transcriptional regulators and the SAGA histone modifying complex functions as a molecular switch to fine-tune tight control of iron homeostasis gene expression in C. albicans.Synucleinopathies are neurodegenerative diseases characterized by the presence of intracellular deposits containing the protein alpha-synuclein (aSYN) within patients' brains. It has been shown that aSYN can form structurally distinct fibrillar assemblies, also termed polymorphs. We previously showed that distinct aSYN polymorphs assembled in vitro, named fibrils, ribbons, and fibrils 91, differentially bind to and seed the aggregation of endogenous aSYN in neuronal cells, which suggests that distinct synucleinopathies may arise from aSYN polymorphs. In order to better understand the differential interactions of aSYN polymorphs with their partner proteins, we mapped aSYN polymorphs surfaces. We used limited proteolysis, hydrogen-deuterium exchange, and differential antibody accessibility to identify amino acids on their surfaces. We showed that the aSYN C-terminal region spanning residues 94 to 140 exhibited similarly high solvent accessibility in these three polymorphs. However, the N-terminal amino acid residues 1 to 38 of fibrils were exposed to the solvent, while only residues 1 to 18 within fibrils 91 were exposed, and no N-terminal residues within ribbons were solvent-exposed. learn more It is likely that these differences in surface accessibility contribute to the differential binding of distinct aSYN polymorphs to partner proteins. We thus posit that the polypeptides exposed on the surface of distinct aSYN fibrillar polymorphs are comparable to fingerprints. Our findings have diagnostic and therapeutic potential, particularly in the prion-like propagation of fibrillar aSYN, as they can facilitate the design of ligands that specifically bind and distinguish between fibrillar polymorphs.

Autoři článku: Solisrask3344 (Cates Smith)