Solismoss2620

Z Iurium Wiki

INTRODUCTION In-flight medical emergencies (IFMEs) average 1 of every 604 flights and are expected to increase as the population ages and air travel increases. Flight diversions, or the rerouting of a flight to an alternate destination, occur in 2 to 13% of IFME cases, but may or may not be necessary as determined after the fact. Estimating the effect of IFME diversions compared to nonmedical diversions can be expected to improve our understanding of their impact and allow for more appropriate decision making during IFMEs.METHODS The current study matched multiple disparate datasets, including medical data, flight plan and track data, passenger statistics, and financial data. Chi-squared analysis and independent samples t-tests compared diversion delays and costs metrics between flights diverted for medical vs. nonmedical reasons. Data were restricted to domestic flights between 1/1/2018 and 6/30/2019.RESULTS Over 70% of diverted flights recover (continue on to their intended destination after diverting); however, flights diverted due to IFMEs recover more often and more quickly than do flights diverted for nonmedical reasons. IFME diversions introduce less delay overall and cost less in terms of direct operating costs and passenger value of time (averaging around 38,000) than do flights diverted for nonmedical reasons.DISCUSSION Flights diverted due to IFMEs appear to have less impact overall than do flights diverted for nonmedical reasons. However, the lack of information related to costs for nonrecovered flights and the decision factors involved during nonmedical diversions hinders our ability to offer further insights.Lewis BA, Gawron VJ, Esmaeilzadeh E, Mayer RH, Moreno-Hines F, Nerwich N, Alves PM. Data-driven estimation of the impact of diversions due to in-flight medical emergencies on flight delay and aircraft operating costs. Aerosp Med Hum Perform. 2021; 92(2)99105.BACKGROUND The effects of seasickness on working performance during motion exposure have been reported, while the aftereffects on working ability and life quality decline (WLD) still remain unclarified.METHODS Two cohorts of healthy male Chinese subjects received either a single (SSV) or repeated (RSV) sea voyage training program on different vessels. A seasickness incidence (SSI) questionnaire was administered to assess the prevalence of seasickness symptoms (vomiting, nausea, other, or no symptoms). A WLD questionnaire was used to survey the general feeling of WLD (severe, moderate, slight, and none) by a 4-point score as well as the incidence rate (IR) of specific WLD items within 24 h after landing.RESULTS The RSV cohort had lower overall IR of WLD than the SSV cohort (54.64% vs. 63.78%, N 657 for both cohorts). The landing ship trainees in both cohorts showed higher general WLD score and higher IRs of physical fatigue, sleep disorder, and spontaneous locomotion decrement than those trained on the small vessels. Subjects with vomiting or nausea had higher general WLD score and higher IRs of concentration distraction, physical fatigue, anorexia, and spontaneous locomotion decrement than those with no symptoms. Higher IRs of firing accuracy decline (SSV 21.35% vs. CX5461 7.13%, 9.14%; RSV 22.11% vs. 9.28%, 5.27%), equipment operation disturbance (SSV 16.85% vs. 3.57%, 6.85%; RSV 20.47% vs. 7.85%, 7.03%) were also observed in the vomiting subjects than those with other symptoms and no symptoms.DISCUSSION Significant WLD after landing was associated with transportation types, seasickness severity, and habituation during sea voyage training.Qi R-R, Xiao S-F, Su Y, Mao Y-Q, Pan L-L, Li C-H, Lu Y-L, Wang J-Q, Cai Y-L. Sea voyage training and motion sickness effects on working ability and life quality after landing. Aerosp Med Hum Perform. 2021; 92(2)9298.BACKGROUND In-flight breaks are used during augmented long-haul flight operations, allowing pilots a sleep opportunity. The U.S. Federal Aviation Administration duty and rest regulations restrict the pilot flying the landing to using the third rest break. It is unclear how effective these restrictions are on pilots ability to obtain sleep. We hypothesized there would be no difference in self-reported sleep, alertness, and fatigue between pilots taking the second vs. third rest breaks.METHODS Pilots flying augmented operations in two U.S.-based commercial airlines were eligible for the study. Volunteers completed a survey at top-of-descent (TOD), including self-reported in-flight sleep duration, and Samn-Perelli fatigue and Karolinska Sleepiness Scale ratings. We compared the second to third rest break using noninferiority analysis. The influence of time of day (home-base time; HBT) was evaluated in 4-h blocks using repeated measures ANOVA.RESULTS From 787 flights 500 pilots provided complete data. The second rest break was noninferior to the third break for self-reported sleep duration (1.5 0.7 h vs. 1.4 0.7 h), fatigue (2.0 1.0 vs. 2.9 1.3), and sleepiness (2.6 1.4 vs. 3.8 1.8) at TOD for landing pilots. Measures of sleep duration, fatigue, and sleepiness were influenced by HBT circadian time of day.DISCUSSION We conclude that self-reported in-flight sleep, fatigue, and sleepiness from landing pilots taking the second in-flight rest break are equivalent to or better than pilots taking the third break. Our findings support providing pilots with choice in taking the second or third in-flight rest break during augmented operations.Gregory KB, Soriano-Smith RN, Lamp ACM, Hilditch CJ, Rempe MJ, Flynn-Evans EE, Belenky GL. Flight crew alertness and sleep relative to timing of in-flight rest periods in long-haul flights. Aerosp Med Hum Perform. 2021; 92(2)8391.BACKGROUND Ischemic hypoxia induced by suprathreshold G-force loading can adversely affect vision, cognition, and lead to loss of consciousness (LOC). The purpose of this study was to determine whether reductions in cerebral oxygenation, caused by subthreshold G-forces (up to 4 Gz and of limited durations that do not lead to LOC), would affect visual perception and working memory performance.METHODS Sixteen subjects performed visual perception and working memory tasks both before and during Gz exposures (1, 2.2, 3, 4 with leg pressurization, 4 with leg and abdomen pressurization) within a human-use centrifuge.RESULTS As measured using near-infrared spectroscopy, blood oxygenation over medial prefrontal cortex was similar in the 1 and 2.2 Gz conditions, but was reduced to a similar extent in the 3 and 4 Gz conditions. In parallel, visual perception accuracy was reduced in the 3 and 4 Gz conditions, with no difference between the 3 and 4 Gz conditions. No change in reaction time was seen. Conversely, neither accuracy nor reaction time changes were observed for the visual working memory task.

Autoři článku: Solismoss2620 (Jiang Davenport)