Snowbrogaard5544

Z Iurium Wiki

Clinical characteristic analysis revealed the statistical analysis between age, weight, BMI, FBG, HDL-c, TC, TG and family history (p<0.05). HWE analysis was in the accordance (p<0.05). The rs7932837 polymorphism in the recessive model showed the positive association (AA+AG vs AA 2.22 [1.25-3.96] & p=0.006) and none of the genotypes or alleles were in the statistical association. Multiple logistic regression analysis revealed positive association with age, BMI and FBG (p<0.05).

This study concludes as rs7932837 polymorphism in the

gene showed positive association with recessive model and future studies recommend to carry out with large number of sample size with additional polymorphisms in

gene.

This study concludes as rs7932837 polymorphism in the HHEX gene showed positive association with recessive model and future studies recommend to carry out with large number of sample size with additional polymorphisms in HHEX gene.The continuous use of brackish groundwater for irrigation is detrimental for soil and crop attributes. A three-year research study was designed for the wheat crop to assess the effects of brackish groundwater on crop yield and soil health under a surface irrigation system. Three sites were selected in different cropping zones of Pakistan. The treatments comprised of irrigation with moderately brackish water having 0.8, 1.3 & 2.7 dSm-1 of salinity and canal water. The results indicated that EC, SAR, bicarbonates, Ca2+ and Mg2+ levels increased in the soil for consecutive years and this increase was more at site S3 followed by S2 and S1. As soil depth is concerned, the increase was more pronounced in upper layers of soil (0-15 cm) as compared to 15-30 cm depth. Growth and yield were also affected by the consecutive use of this water, the number of plants, plant height, the number of spikes per plant, and yield was reduced at all the three sites. However, the impact was less pronounced at the site S1 whereas S3 was the most affected one. Grain weight and dry matter weight were observed to be maximum at S1. Water productivity was also calculated for all the three sites. Maximum water productivity was observed at S1 followed by S2 & S3. It was concluded that the continuous use of brackish water would have an adverse effect on crop yield and subsequently, soil health is also affected by it significantly.Cluster bean (Cyamopsis tetragonoloba L.) yield has plateaued due to reduction in rainfall and rise in temperature. Therefore, its production cycle could not get appropriate water and temperature. It becomes important to standardize the sowing time and plant spacing of cluster beans in changing climate scenarios to get higher productivity. Therefore, a field study was conducted in 2019 at the Research area of MNS-University of Agriculture, Multan, Pakistan to evaluate the effect of four sowing times (15th May, 1st June, 15th June, and 1st July) and three plant spacings (10, 12 and 15 cm) on crop growth, yield, and physiological functions of cluster bean genotype BR-2017 under split plot arrangement under randomized complete block design (RCBD) with three replications. The sowing times (15th May, 1st June, 15th June, and 1st July) were placed in the main plot, while plant spacing (10, 12 and 15 cm) was maintained in subplots. The significant effect of sowing time and plant spacing was observed on pod plant-1, pod length, grain yield, and 1000-grain weight. Results showed that 1st June sowing performed better over 15th May, 15th June, and 1st July, while plant spacing 15 cm about in all sowing times showed higher results on growth and yield parameters of cluster bean over plant spacing 10, 12, and 15 cm. The 1st June sowing time at 15 cm plant spacing showed 8.0, 22.7, and 28.5% higher grains pod-1 than 15th May, 15th June, and 1st July sowing, respectively. Maximum grain yield was observed on 1st June in all three spacings (10, 12, and 15 cm). The chord diagram indicates that the crop has received optimum environmental conditions when sown 1st June over other sowing times. In conclusion, 1st June sowing with 15 cm plant spacing could be a good option to achieve maximum productivity of cluster bean under changing climate scenario.

Date palm (

) mucilage obtained from its dried fruits was evaluated to check the proximate composition and physicochemical properties.

Commercially available date palm mucilage was precipitated using ethanol. Both (crude and purified) mucilage samples were subjected for proximate, physiochemical, biochemical and antioxidant activity using standard experimental protocols. Elemental analysis of crude date palm mucilage was also performed using LIBS.

Ethanol was used to purify the mucilage (58.4% yield). Proximate analysis was carried out on crude and purified mucilages showing crude fat, crude protein, crude fiber, total carbohydrates, nitrogen free extract and total energy in purified mucilage were more than the crude mucilage. learn more Moisture and ash contents were found more in crude mucilage than the purified mucilage. Laser introduced breakdown spectroscopy (LIBS) detected Zn, Mg, Mn, K, Na, Cu, Fe and Ca metals as components of mucilage. Biochemical profiling indicated that crude and purified mucilage have proteins, protease, superoxide dismutase, catalase, peroxidase, amylase, ascorbate peroxidase, free amino acids, total soluble sugars, reducing sugars, non-reducing sugars, total anthocyanin, free anthocyanin, total flavonoid contents and total phenolic contents.

The study shows that date palm mucilage could be potentially used as pharmaceutical and medicinal ingredient due to presence of bioactive compounds and its physicochemical properties.

The study shows that date palm mucilage could be potentially used as pharmaceutical and medicinal ingredient due to presence of bioactive compounds and its physicochemical properties.In this study, the combined effect of temperature (60 to 80 °C) time (10 to 15 min.) and pH (3 to 6) was employed on the anti-oxidant potential (1,1-diphenyl-2-picrylhydrazyl-radical scavenging activity-DPPH-RSA, total phenolic content-TPC, and total flavonoid content-TFC) of wild bush Indian honey from high altitudes of Kashmir Valley by using response surface methodology (RSM). The statistical analysis showed that all the process variables had a substantial effect on the responses related to DPPH-RSA, TFC, and TPC, all of which increased as temperature and time increased. With an increase in pH, the antioxidant activity of wild bush honey was significantly decreased. The heat treatment of honey at high temperature (80 °C) was found to be more efficacious than at 70 and 60 °C, respectively. The findings showed that at higher temperature, browning pigments were formed which enhanced considerably the antioxidant activity of honey.Waste water fed pisciculture is nowadays a common feature in aquaculture belts across the globe. East Kolkata Wetlands (EKW) a nature's wonder where waste water fed natural aquaculture beltis is active for more than 70 years now and is efficiently operating as a natural waste management system. The peri urban wetland is also a site of international importance and is listed in Ramsar. Field and lab-based investigations were carried out using three commonly edible carp variety of fishes such as Rohu (Labeorohita), Catla (Catlacatla) and Nile Tilapia (Oreochromisniloticus) collected from ponds (bheries) of the wetland located on the eastern fringes of Kolkata, India. The lab-based analysis revealed the presence of toxic metals such as Cr, Pb, Cd and Hg in the samples with the seasonal order of accumulation being monsoon > post-monsoon > winter > pre-monsoon in the successive years of 2016, 2017 and 2018. Bio-accumulation of toxic heavy metals in fishes follows the order Tilapia > Rohu > Catla where as the bioaccumulation pattern of toxic metals shows the trend Pb > Cd > Cr > Hg across all the seasons and years. The ambient media was also investigated to understand in detail the bioaccumulation pattern at different trophic levels of the ecosystem. Water and sediments were analyzed to evaluate the contamination of toxic heavy metals from point and non-point sources. Current study shows the observed bioaccumulation pattern of the toxic heavy metals in one of the fragile ecosystems that raises an important question of environmental safety in the food we intake on daily basis.With the progressive focus on renewable energy via biofuels production from lignocellulosic biomass, cellulases are the key enzymes that play a fundamental role in this regard. This study aims to unravel the characteristics of Thermotoga maritima MSB8 (Tma) (a hyperthermophile from hot springs) thermostable glycoside hydrolase enzyme. Here, a glycoside hydrolase gene of Thermotoga maritima (Tma) was heterologously expressed and characterized. The gene was placed in the pQE-30 expression vector under the T5 promotor, and the construct pQE-30-Gh was then successfully integrated into Escherichia coli BL21 (DH5α) genome by transformation. Sequence of the glycoside hydrolase contained an open reading frame of 2.124 kbp, encoded a polypeptide of 721 amino acid residues. The molecular weight of the recombinant protein estimated was 79 kDa. The glycoside hydrolase was purified by Ni+2-NTA affinity chromatography and its enzymatic activity was investigated. The recombinant enzyme is highly stable within an extreme pH range (2.0-7.0) and highly thermostable at 80 °C for 72 h indicating its viability in hyperthermic environment and acidic nature. Moreover, the Ca2+ and Mn2+ introduction stimulated the residual activity of recombinant enzyme. Conclusively, the thermostable glycoside hydrolase possesses potential to be exploited for industrial applications at hyperthermic environment.Toxicity induced by heavy metals deteriorates soil fertility status. It also adversely affects the growth and yield of crops. These heavy metals become part of the food chain when crops are cultivated in areas where heavy metals are beyond threshold limits. Cadmium (Cd) and nickel (Ni) are considered the most notorious ones among different heavy metals. The high water solubility of Cd made it a potential toxin for plants and their consumers. Accumulation of Ni in plants, leaves, and fruits also deteriorates their quality and causes cancer in humans when such a Ni-contaminated diet is used regularly. Both Cd and Ni also compete with essential nutrients of plants, making the fertility status of soil poor. To overcome this problem, the use of activated carbon biochar can play a milestone role. In the recent past application of activated carbon biochar is gaining more and more attention. Biochar sorb the Cd and Ni and releases essential micronutrients that are part of its structure. Many micropores and high cation exchange capacity make it the most acceptable organic amendment to improve soil fertility and immobilize Cd and Ni. In addition to improving water and nutrients, soil better microbial proliferation enhances the soil rhizosphere ecosystem and nutrient cycling. This review has covered Cd and Ni harmful effects on crop yield and their immobilization by activated carbon biochar. The focus was made to elaborate on the positive effects of biochar on crop yield and soil health.

Autoři článku: Snowbrogaard5544 (Dwyer Valencia)