Smedowens4168
Neonicotinoid insecticides (NNIs) are the most extensively used insecticides worldwide, threatening ecosystem and human health. However, nationwide studies of NNIs and their metabolites in drinking water are limited. In order to characterize the contamination status of NNIs in drinking water throughout China, we collected 884 drinking water samples including 789 tap water and 95 groundwater samples from 32 provinces (covering seven regions of mainland China south, central, east, north, northeast, northwest, and southwest) and Hong Kong. Ten NNIs and six of their main metabolites were determined in the water samples. The relative potency factor method was used to assess the cumulative concentrations of NNIs and their metabolites (imidacloprid-equivalent total NNIs, IMIeq) based on the chronic reference doses (cRfDs) of the NNIs or the toxic effects of the mataboilites. The IMIeq varied among the studied regions, with a median concentration of 24.5 ng/L and a maximum concentration of 8,622 ng/L. The predominanthe toxicity differences between NNIs and their metabolites.Photodegradation of the natural steroid 17β-estradiol (E2), an endocrine-disrupting hormone that has been widely detected in aquatic environments, was investigated in wastewater effluents at various pH ranges under simulated solar irradiation. The rate of E2 degradation in the sewage effluents was stable at pH 6.0-7.0 but suddenly increased from pH 8.0-10.0. The second-order reaction rate constants of E2 with 3EfOM* and CO3•- were measured to increase 11.0-fold and 18.0-fold from pH 6.0 to 10.0, respectively. ZK53 supplier Two main reasons are proposed for this sharp increase. First, the change in the ionization state of E2 made it susceptible to oxidation by triplet-state effluent organic matter (3EfOM*) and carbonate radicals (CO3•-). Second, the steady-state concentration of CO3•- increased with increasing pH. Indirect photolysis was suggested to be the main degradation pathway in the sewage effluents, and 3EfOM* was proposed to play a major role at pH 8.0-9.0, while CO3•- played a significant role at pH 10.0. In this study, EfOM was shown for the first time to inhibit the oxidation of E2 initiated by 3EfOM* and CO3•-. Thus, we suggest that EfOM plays a dual role in the photodegradation of E2 EfOM can not only be activated as 3EfOM* to degrade E2 but also can inhibit the degradation of E2 by reducing the E2 oxidation intermediate back to E2. The estrogenic activity of the photodegradation products was also studied. The in vitro estrogenic activity of E2 solutions decreased approximately as fast as the E2 photodegradation occurred in the effluent water at various pH values, suggesting that solar photodegradation in sewage effluents reduces the risk of endocrine disruption in waters impacted by E2 and subject to continuing inputs. The results of this study are important for predicting the environmental fate of endocrine-disrupting chemicals and developing methods for their removal from aquatic environments.Inertial measurement units (IMU), including accelerometers and gyroscopes, can support the assessment of gait regularity, relevant for an effective walking. Gait regularity is typically quantified by an autocorrelation analysis of trunk/pelvis accelerations. A methodological upgrade fosters a multi-sensor approach including upper and lower limbs. Very few studies dealt with gait regularity using gyroscope data and no comparison between the two inertial sensors has been published. Therefore, this study compares gait regularity assessment by autocorrelation analyses performed on accelerometer and gyroscope data simultaneously acquired. Twenty-five adult healthy subjects walked steady-state on treadmill at three speeds (3.6, 5.0, 6.4 km/h), with rest between. Four IMUs were firmly attached on the trunk, pelvis, wrist and ankle. The autocorrelation method was applied to time-windows of the signal vector magnitude and resulted, on average for each trial, in its regularity index (RI) and periodicity index (PI), i.e. the stride time. Results showed that both sensors identified the same PI (Spearman correlation coefficient = 0.999), and evidenced that, for matched sensor locations and gait speeds, the accelerometer-based RI was larger/equal to the gyroscope-based RI on 86.3% of all conditions (overall median of gyroscope-to-accelerometer RI ratio was 91.1%). The two sensors gave always statistically different RI, with the exception of the ankle at the lowest speed and wrist at higher speeds. Such results help remove potential confounders from analyses performed with different sensors and support the use of accelerometers for gait regularity assessment, not excluding that gyroscopes may be more suitable for other human movements.Modeling flow field in tumor regions interstitial space is of primary importance, because of the importance of advection in macromolecule drug delivery. Its deformation has also to be taken into account because of the forces caused by the fluid; if the tumor region is not isothermal, this deformation can be also strongly affected by temperature fields. In this paper, the effects of thermal boundary conditions on a tumor region periphery with an internal heat source are investigated. The tumor region is modeled as a deformable sphere, in which two phases can be distinguished. The fluid phase is the interstitial fluid, while the rest of the tumor is modeled as the solid phase, including also capillaries and tissues. Transient-state governing equations for mass, momentum and energy are written for both phases, by also considering tumor deformation under the linear elastic material assumption. A situation of Tumor Blood Flow (TBF) rapid decay, in which vascular pressure rapidly approaches to zero, is considered, while the heat source is modeled as a fourth-grade radial-decay function. Boundary conditions for the energy equation are varied on the external surface of the sphere, in order to appreciate the effects of the surrounding on flow and temperature fields inside the tumor. After scaling equations, a finite-element scheme is employed for the numerical solution. Comparisons with analytical solutions from literature show a good agreement. Results are shown for different dimensionless parameters that are referred to temperature, volumetric strain, pressure and velocity, showing in which case external boundary conditions strongly affect tumor region flow fields and a third-kind boundary condition is needed.