Smedfoged5066
The intergenerational support in the adoption of new technologies has important implications for helping older persons to remain independent and to age in place, in both age-friendly cities and in rural communities. The findings contribute to the growing literature in the fields of gerontology and gerontechnology on intergenerational influences and the impacts of technology use in later life and suggest the flexibility and willingness of older persons to adopt to new technologies as well as the value of intergenerational relationships for overcoming barriers to technology adoption.The calcium (Ca2+)-dependent membrane-binding Annexin A6 (AnxA6), is a multifunctional, predominantly intracellular scaffolding protein, now known to play relevant roles in different cancer types through diverse, often cell-type-specific mechanisms. AnxA6 is differentially expressed in various stages/subtypes of several cancers, and its expression in certain tumor cells is also induced by a variety of pharmacological drugs. Together with the secretion of AnxA6 as a component of extracellular vesicles, this suggests that AnxA6 mediates distinct tumor progression patterns via extracellular and/or intracellular activities. Although it lacks enzymatic activity, some of the AnxA6-mediated functions involving membrane, nucleotide and cholesterol binding as well as the scaffolding of specific proteins or multifactorial protein complexes, suggest its potential utility in the diagnosis, prognosis and therapeutic strategies for various cancers. In breast cancer, the low AnxA6 expression levels in the more aggressive basal-like triple-negative breast cancer (TNBC) subtype correlate with its tumor suppressor activity and the poor overall survival of basal-like TNBC patients. In this review, we highlight the potential tumor suppressor function of AnxA6 in TNBC progression and metastasis, the relevance of AnxA6 in the diagnosis and prognosis of several cancers and discuss the concept of therapy-induced expression of AnxA6 as a novel mechanism for acquired resistance of TNBC to tyrosine kinase inhibitors.Genome editing is a relevant, versatile, and preferred tool for crop improvement, as well as for functional genomics. In this review, we summarize the advances in gene-editing techniques, such as zinc-finger nucleases (ZFNs), transcription activator-like (TAL) effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated with the Cas9 and Cpf1 proteins. These tools support great opportunities for the future development of plant science and rapid remodeling of crops. selleck Furthermore, we discuss the brief history of each tool and provide their comparison and different applications. Among the various genome-editing tools, CRISPR has become the most popular; hence, it is discussed in the greatest detail. CRISPR has helped clarify the genomic structure and its role in plants For example, the transcriptional control of Cas9 and Cpf1, genetic locus monitoring, the mechanism and control of promoter activity, and the alteration and detection of epigenetic behavior between single-nucleotide polymorphisms (SNPs) investigated based on genetic traits and related genome-wide studies. The present review describes how CRISPR/Cas9 systems can play a valuable role in the characterization of the genomic rearrangement and plant gene functions, as well as the improvement of the important traits of field crops with the greatest precision. In addition, the speed editing strategy of gene-family members was introduced to accelerate the applications of gene-editing systems to crop improvement. For this, the CRISPR technology has a valuable advantage that particularly holds the scientist's mind, as it allows genome editing in multiple biological systems.The globally fast-spreading novel coronavirus disease (COVID-19) is now testing the abilities of all countries to manage its widespread implications on public health. To effectively contain its impacts, a nation-wide temporary lockdown was enforced in India. The resultant panic buying and stockpiling incidents together with spread of misinformation created a sense of food insecurity at local level. This paper discusses a specific case of Nagpur from the worst affected Maharashtra state of India, wherein the urban-rural food supply chains were reportedly disrupted. Based on formal interviews with local government officials, a month-long timeline of COVID-19 outbreak in Nagpur was studied along with the consequent government initiatives for maintaining public health and food supply. While the city residents were confined to their homes, this study then assessed their perceived food security at household level, along with their "Immediate Concerns" and "Key Information Sources". Through online surveys at two different time intervals, the concerns of "Food and Grocery" were found to be rising, and "Government Apps and Websites" were identified as the most reliable source of information. Based on the research findings, the authors further suggest specific policy recommendations for addressing the immediate and long-term concerns related to food systems in Nagpur.Epidemiologic studies have revealed inconsistent evidence of gene-diet interaction in relation to colorectal cancer (CRC). The aim of this study was to analyze them in a sample of cases and controls from the population-based bowel cancer screening program of the Osakidetza/Basque Health Service. This study analyzed dietetic, genetic, demographic, socioeconomic factors and lifestyles. In the present manuscript, the survey design, sampling, instruments, measurements and related quality management were presented. Moreover, we analyze differences between cases and controls in some data, especially those related to diet. The participants were 308 cases and 308 age- and sex-matched subjects as controls. Cases were more likely than controls to have overweight/obesity (67.5% vs. link2 58.1%, p less then 0.05), a lower intake of vitamin B2 (0.86 ± 0.23 vs. 0.92 ± 0.23 mg/1000 kcal, p less then 0.01) and calciumphosphorus ratio (0.62 ± 0.12 vs. 0.65 ± 0.13, p less then 0.01). A higher proportion of cases than controls did not meet the Nutritional Objectives for saturated fatty acids (85.7% vs. 67.5%, p less then 0.001) or cholesterol (35.4% vs. 25.0%, p less then 0.01). In conclusion, the present study provides valuable data for analyzing the complexity of gene-diet interaction in relation to CRC. The results presented here suggest that overweight/obesity and a high intake of certain dietary components, especially saturated fatty acids and cholesterol, are more frequent in cases than in controls.Previously, we demonstrated that the homeoprotein Msx1 interaction with p53 inhibited tumor growth by inducing apoptosis. However, Msx1 can exert its tumor suppressive effect through the inhibition of angiogenesis since growth of the tumor relies on sufficient blood supply from the existing vessels to provide oxygen and nutrients for tumor growth. We hypothesized that the inhibition of tumor growth by Msx1 might be due to the inhibition of angiogenesis. Here, we explored the role of Msx1 in angiogenesis. Overexpression of Msx1 in HUVECs inhibited angiogenesis, and silencing of Msx1 by siRNA abrogated its anti-angiogenic effects. Furthermore, forced expression of Msx1 in mouse muscle tissue inhibited vessel sprouting, and application of an Ad-Msx1-transfected conditioned medium onto the chicken chorioallantoic membrane (CAM) led to a significant inhibition of new vessel formation. To explore the underlying mechanism of Msx1-mediated angiogenesis, yeast two-hybrid screening was performed, and we identified PIASy (protein inhibitor of activated STAT Y) as a novel Msx1-interacting protein. We mapped the homeodomain of Msx1 and the C-terminal domain of PIASy as respective interacting domains. Consistent with its anti-angiogenic function, overexpression of Msx1 suppressed the reporter activity of VEGF. Interestingly, PIASy stabilized Msx1 protein, whereas deletion of the Msx1-interacting domain in PIASy abrogated the inhibition of tube formation and the stabilization of Msx1 protein. Our findings suggest the functional importance of PIASy-Msx1 interaction in Msx1-mediated angiogenesis inhibition.Zero-order release formulations are designed to release a drug at a constant rate over a prolonged time, thus reducing systemic side effects and improving patience adherence to the therapy. Such formulations are traditionally complex to manufacture, requiring multiple steps. In this work, fused deposition modeling (FDM) 3D printing was explored to prepare on-demand printlets (3D printed tablets). link3 The design includes a prolonged release core surrounded by an insoluble shell able to provide zero-order release profiles. The effect of drug loading (10, 25, and 40% w/w paracetamol) on the mechanical and physical properties of the hot melt extruded filaments and 3D printed formulations was evaluated. Two different shell 3D designs (6 mm and 8 mm diameter apertures) together with three different core infills (100, 50, and 25%) were prepared. The formulations showed a range of zero-order release profiles spanning 16 to 48 h. The work has shown that with simple formulation design modifications, it is possible to print extended release formulations with tunable, zero-order release kinetics. Moreover, by using different infill percentages, the dose contained in the printlet can be infinitely adjusted, providing an additive manufacturing route for personalizing medicines to a patient.There are concerns that general dentists (GDs) and dental specialists may be prescribing antibiotics inappropriately. This study explored the prescribing habits and decision-making processes of GDs versus oral and maxillofacial surgeons (OMFSs). A case-based online questionnaire was used to examine the prescribing of therapeutic and prophylactic antibiotics in two clinical scenarios. Stratified and systematic sampling strategies were implemented to provide a representative sample. The final valid sample was 60 GDs and 18 OMFSs. The majority of OMFSs (61.1%) routinely prescribed antibiotics for the surgical removal of third molars, which was significantly greater than for GDs (23.5%). For implant placement procedures, 72.2% of OMFSs and 62.1% of GDs prescribed antibiotics. Amoxicillin was the most selected agent for both scenarios. All OMFSs would prescribe antibiotic prophylaxis for patients with uncontrolled diabetes mellitus in both cases, but only 56.0-63.0% of GDs would do this. GDs based prescribing decisions primarily on information from prescribing guides, while OMFSs relied more on information gained from specialist training. Surgical prophylaxis protocols differed considerably between groups. Both groups used surgical prophylaxis for some situations that are outside current recommendations. Education with regards to discrepancies between clinical practice and current guidelines for antimicrobial therapy is needed to progress antimicrobial stewardship.High energy ball milling is used to make first the quaternary sulfide Cu2ZnSnS4 raw nanopowders from two different precursor systems. The mechanochemical reactions in this step afford cubic pre-kesterite with defunct semiconducting properties and showing no solid-state 65Cu and 119Sn MAS NMR spectra. In the second step, each of the milled raw materials is annealed at 500 and 550 °C under argon to result in tetragonal kesterite nanopowders with the anticipated UV-Vis-determined energy band gap and qualitatively correct NMR characteristics. The magnetic properties of all materials are measured with SQUID magnetometer and confirm the pre-kesterite samples to show typical paramagnetism with a weak ferromagnetic component whereas all the kesterite samples to exhibit only paramagnetism of relatively decreased magnitude. Upon conditioning in ambient air for 3 months, a pronounced increase of paramagnetism is observed in all materials. Correlations between the magnetic and spectroscopic properties of the nanopowders including impact of oxidation are discussed.