Smartgunter4154
High levels of HIV drug resistance were found in all classes of antiretroviral drugs included in the current first-line ART regimens in Africa. The development of DRMs may be influenced by host HLA class I-restricted immunity.
High levels of HIV drug resistance were found in all classes of antiretroviral drugs included in the current first-line ART regimens in Africa. The development of DRMs may be influenced by host HLA class I-restricted immunity.Cardiomyocyte injury and troponin T elevation has been reported within COVID-19 patients and are associated with a worse prognosis. Limited data report this association among COVID-19 pregnant patients.
We aimed to analyze the association between troponin T levels in severe COVID-19 pregnant women and risk of viral sepsis, intensive care unit (ICU) admission, or maternal death.
We performed a prospective cohort of all obstetrics emergency admissions from a Mexican National Institute. All pregnant women diagnosed by reverse transcription-polymerase chain reaction (RT-qPCR) for SARS-CoV-2 infection between October 2020 and May 2021 were included. Clinical data were collected, and routine blood samples were obtained at hospital admission. Seric troponin T was measured at admission.
From 87 included patients, 31 (35.63%) had severe COVID-19 pneumonia, and 6 (6.89%) maternal deaths. ROC showed a significant relationship between troponin T and maternal death (AUC 0.979, CI 0.500-1.000). At a cutoff point of 7 ng/mL the detection rate for severe pneumonia was 83.3% (95%CI 0.500-0.100) at 10% false-positive rate.
COVID-19 pregnant women with elevated levels of troponin T present a higher risk of death and severe pneumonia.
COVID-19 pregnant women with elevated levels of troponin T present a higher risk of death and severe pneumonia.Venezuelan equine encephalitis virus (VEEV) is an Alphavirus in the Togaviridae family of positive-strand RNA viruses. The viral genome of positive-strand RNA viruses is infectious, as it produces infectious virus upon introduction into a cell. VEEV is a select agent and samples containing viral RNA are subject to additional regulations due to their infectious nature. Therefore, RNA isolated from cells infected with BSL-3 select agent strains of VEEV or other positive-strand viruses must be inactivated before removal from high-containment laboratories. In this study, we tested the inactivation of the viral genome after RNA fragmentation or cDNA synthesis, using the Trinidad Donkey and TC-83 strains of VEEV. We successfully inactivated VEEV genomic RNA utilizing these two protocols. Our cDNA synthesis method also inactivated the genomic RNA of eastern and western equine encephalitis viruses (EEEV and WEEV). We also tested whether the purified VEEV genomic RNA can produce infectious virions in the absence of transfection. Our result showed the inability of the viral genome to cause infection without being transfected into the cells. Overall, this work introduces RNA fragmentation and cDNA synthesis as reliable methods for the inactivation of samples containing the genomes of positive-strand RNA viruses.Chikungunya virus (CHIKV) presents a major burden on healthcare systems worldwide, but specific treatment remains unavailable. Attachment and fusion of CHIKV to the host cell membrane is mediated by the E1/E2 protein spikes. We used an in vitro single-particle fusion assay to study the effect of the potent, neutralizing antibody CHK-152 on CHIKV binding and fusion. We find that CHK-152 shields the virions, inhibiting interaction with the target membrane and inhibiting fusion. The analysis of the ratio of bound antibodies to epitopes implied that CHIKV fusion is a highly cooperative process. Further, dissociation of the antibody at lower pH results in a finely balanced kinetic competition between inhibition and fusion, suggesting a window of opportunity for the spike proteins to act and mediate fusion, even in the presence of the antibody.Alphaviruses (Togaviridae) are arthropod-borne viruses responsible for several emerging diseases, maintained in nature through transmission between hematophagous arthropod vectors and susceptible vertebrate hosts. Although bats harbor many species of viruses, their role as reservoir hosts in emergent zoonoses has been verified only in a few cases. With bats being the second most diverse order of mammals, their implication in arbovirus infections needs to be elucidated. Reports on arbovirus infections in bats are scarce, especially in South American indigenous species. In this work, we report the genomic detection and identification of two different alphaviruses in oral swabs from bats captured in Northern Uruguay. Phylogenetic analysis identified Río Negro virus (RNV) in two different species Tadarida brasiliensis (n = 6) and Myotis spp. (n = 1) and eastern equine encephalitis virus (EEEV) in Myotis spp. (n = 2). Previous studies of our group identified RNV and EEEV in mosquitoes and horse serology, suggesting that they may be circulating in enzootic cycles in our country. Our findings reveal that bats can be infected by these arboviruses and that chiropterans could participate in the viral natural cycle as virus amplifiers or dead-end hosts. Further studies are warranted to elucidate the role of these mammals in the biological cycle of these alphaviruses in Uruguay.Respiratory viral infections (RVIs) in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients can be of concern due to the patients' depressed immune status, but few data are available about the significance of a pre-transplant positive testing. In this retrospective observational study, we analyzed a cohort of patients that were transplanted between 1 January 2010 and 31 October 2019 in the Geneva University Hospitals with at least one RVI before or after transplantation. Selleck TC-S 7009 At least one RVI was detected in 319/533 (63.5%) transplanted patients. Rhinoviruses were most frequently identified (37%), followed by human coronaviruses (17.1%), parainfluenza viruses (13.9%), and influenza viruses (9.9%). First infection in the post-transplant period occurred at a mean time of 334 days (SD 338). Specific analysis of a subgroup of 65 patients with pre-transplant RVIs was performed. Among them, 39 (59%) patients had symptoms and 14 (21.2%) had a lower respiratory tract infection. Four patients (6.1%) (three rhinovirus and one influenza) needed an intensive care unit admission, of which, three (4.5%) (two rhinovirus and one influenza) were intubated. The patient with influenza infection diagnosed the day of the transplantation died within the first 30 days of the infection. Two patients with rhinovirus infection died within 3 months of unrelated causes. Our data show that rhinovirus infections are predominant in allo-HSCT patients, including among pre-transplant infections; however, mortality due to pre-transplant RVI is low and was only clearly identified in one patient with influenza infection. RVI within the month preceding allo-HSCT is not associated with direct morbidity or mortality in this cohort.Treatment options for HDV have been limited to interferon alfa-based therapies with its poor efficacy to side effects ratio. Several novel therapies have now advanced into the clinic. As they each have a different mechanism of action, there is the potential for combination therapy. Here we review how studying the HDV life cycle has led to the development of these novel therapies, the key developments leading to, and the details of, the first combination study of novel anti-HDV therapies, and suggest what additional combinations of novel therapies can be anticipated as we enter this exciting new area of HDV treatments.The hepatitis E virus (HEV) is a major global health problem, leading to large outbreaks in the developing world and chronic infections in the developed world. HEV is a non-enveloped virus, which circulates in the blood in a quasi-enveloped form. The quasi-envelope protects HEV particles from neutralising anti-capsid antibodies in the serum; however, most vaccine approaches are designed to induce an immune response against the HEV capsid. In this study, we explored systemic in vivo administration of a novel synthetic and myotropic Adeno-associated virus vector (AAVMYO3) to express the small HEV phosphoprotein ORF3 (found on quasi-enveloped HEV) in the musculature of mice, resulting in the robust and dose-dependent formation of anti-ORF3 antibodies. Neutralisation assays using the serum of ORF3 AAV-transduced mice showed a modest inhibitory effect on the infection of quasi-enveloped HEV in vivo, comparable to previously characterised anti-ORF3 antibodies used as a control. The novel AAVMYO3 capsid used in this study can serve as a versatile platform for the continued development of vector-based vaccines against HEV and other infectious agents, which could complement traditional vaccines akin to the current positive experience with SARS-CoV-2.The genus Pestivirus, family Flaviviridae, includes four historically accepted species, i.e., bovine viral diarrhea virus (BVDV)-1 and -2, classical swine fever virus (CSFV), and border disease virus (BDV). A large number of new pestivirus species were identified in recent years. A common feature of most members is the presence of two unique proteins, Npro and Erns, that pestiviruses evolved to regulate the host's innate immune response. In addition to its function as a structural envelope glycoprotein, Erns is also released in the extracellular space, where it is endocytosed by neighboring cells. As an endoribonuclease, Erns is able to cleave viral ss- and dsRNAs, thus preventing the stimulation of the host's interferon (IFN) response. Here, we characterize the basic features of soluble Erns of a large variety of classified and unassigned pestiviruses that have not yet been described. Its ability to form homodimers, its RNase activity, and the ability to inhibit dsRNA-induced IFN synthesis were investigated. Overall, we found large differences between the various Erns proteins that cannot be predicted solely based on their primary amino acid sequences, and that might be the consequence of different virus-host co-evolution histories. This provides valuable information to delineate the structure-function relationship of pestiviral endoribonucleases.Vibrio parahaemolyticus causes aquatic vibriosis. Its biofilm protects it from antibiotics; therefore, a new different method is needed to control V. parahaemolyticus for food safety. Phage therapy represents an alternative strategy to control biofilms. In this study, the lytic Vibrio phage vB_VpaP_FE11 (FE11) was isolated from the sewers of Guangzhou Huangsha Aquatic Market. Electron microscopy analysis revealed that FE11 has a typical podovirus morphology. Its optimal stability temperature and pH range were found to be 20-50 °C and 5-10 °C, respectively. It was completely inactivated following ultraviolet irradiation for 20 min. Its latent period is 10 min and burst size is 37 plaque forming units/cell. Its double-stranded DNA genome is 43,397 bp long, with a G + C content of 49.24% and 50 predicted protein-coding genes. As a lytic phage, FE11 not only prevented the formation of biofilms but also could destroy the formed biofilms effectively. Overall, phage vB_VpaP_FE11 is a potential biological control agent against V.