Slotjonassen7078
Large signal amplitudes coupled with the inherent simplicity of the VBR sensor design result in high signal-to-noise (S/N > 100) and excellent sensor-to-sensor reproducibility characterized by coefficients of variation in the range of 3-7% across the DJ-1 binding curve down to a concentration of 30 pM, near the 10 pM limit of detection (LOD), encompassing four orders of magnitude in concentration.Inverted perovskite solar cells (PSCs) with a C60 framework are known for their common drawback of low power conversion efficiency (PCE) of less then 20% because of nonradiative recombination and inefficient charge transport at their perovskite interfaces. Here, we report an ultrathin [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as a cap layer on perovskite films to overcome this issue. Such a functional cap layer efficiently passivates trap states and establishes a gradient energy level alignment onto perovskite, facilitating the efficient charge transfer and extraction. The as-fabricated inverted PSCs capped with such ultrathin PCBM exhibit a record PCE of 20.07%. After the storage under a N2 atmosphere for more than 500 h, the PCE of PSCs retains over 85% of its initial level. Our work provides an effective method to upgrade inverted PSCs with the C60 framework with improved efficiency and stability.Altering the charge carrier transport polarities of organic semiconductors by molecular orbital distribution has gained great interest. Herein, we report two isomeric azulene-decorated naphthodithiophene diimide (NDTI)-based triads (e.g., NDTI-B2Az and NDTI-B6Az), in which two azulene units were connected with NDTI at the 2-position of the azulene ring in NDTI-B2Az, whereas two azulene units were incorporated with NDTI at the 6-position of the azulene ring in NDTI-B6Az. The two isomeric triads were excellently soluble in common organic solvents. Density functional theory calculations on the molecular orbital distributions of the triads reveal that the lowest unoccupied molecular orbitals are completely delocalized over the entire molecule for both NDTI-B2Az and NDTI-B6Az, indicating great potential for n-type transport behavior, whereas the highest occupied molecular orbitals are mainly delocalized over the entire molecule for NDTI-B2Az or only localized at the two terminal azulene units for NDTI-B6Az, implying great potential for p-type transport behavior for the former and a disadvantage of hole carrier transport for the latter. Under ambient conditions, solution-processed bottom-gate top-contact transistors based on NDTI-B2Az showed ambipolar field-effect transistor (FET) characteristics with high electron and hole mobilities of 0.32 (effective electron mobility ≈0.14 cm2 V-1 s-1 according to a reliability factor of 43%) and 0.03 cm2 V-1 s-1 (effective hole mobility ≈0.01 cm2 V-1 s-1 according to a reliability factor of 33%), respectively, whereas a typically unipolar n-channel behavior is found for a film of NDTI-B6Az with a high electron mobility up to 0.13 cm2 V-1 s-1 (effective electron mobility ≈0.06 cm2 V-1 s-1 according to a reliability factor of 43%). The results indicate that the polarity change of organic FETs based on the two isomeric triads could be controlled by the molecular orbital distributions through the connection position between the azulene unit and NDTI.The pressure sensor with high sensitivity and a broad pressure sensing range is highly desired for flexible electronics. Here, a high-performance pressure sensor based on a hybrid structure was facilely fabricated using the glass template method, which consists of polyurethane (PU) mesodomes embedded with gradient-distributed silver nanowire (AgNW). Such a novel hybrid architecture enables the as-prepared PU/AgNW pressure sensor to have high sensitivity as well as a wide detection range. Moreover, the obtained PU/AgNW pressure sensors have a fast response time (20 ms), good cycling stability, and excellent flexibility. The pressure sensor, benefiting from its outstanding comprehensive sensing performance, can be used for expression recognition and human activity monitoring, showing tremendous application potential in wearable devices. The proposed architecture and developed methodology in this work is promising for future flexible electronic applications.The goal of this study was to investigate the effects of early fecal microbial transfer (FMT) on the microflora of recipient piglets, where Yorkshire newborn piglets and Min sows (an indigenous pig breed in China) were used as the fecal recipients and donors, respectively, to reveal the changes in immunity and development-related functions of the intestinal mucosa driven by FMT. The recipient group was inoculated with fecal microbial fluids from days 1 to 10. On day 21, the relative abundance of the Proteobacteria was reduced; the concentrations of immunoglobulin M (IgM) and immunoglobulin G (IgG) in the jejunal mucosa, and that of IgG in the ileal mucosa of the recipient group, were increased (P less then 0.05). On day 40, the relative abundance of the Firmicutes in the recipient group was increased, while that of Bacteroides was decreased. read more The concentrations of IgG and IgM in the ileal mucosa of the recipient group were increased. FMT protected the intestine by modulating the antimicrobial peptides of the intestinal mucosa (P less then 0.05). The results of this study revealed that early FMT can improve the gut microbiota, intestinal mucosal immunity, and intestinal development-related functions of Yorkshire piglets.With the rapid development of the data security technology, increasing attention has been paid to programmable memory materials with desirable security. However, most conventional memory devices only have a single switchable color state. In this research, a kind of pH-responsive Chameleon luminescent sensor (Lap@Eu-OFX, Lap = laponite, OFX = ofloxacin) based on lanthanide doping has been fabricated, which can realize highly contrast, dynamically controlled full-color display by changing the pH value of the solution. The advanced programmable security inks, including the green and red luminescent inks, have been prepared and used to protect confidential information. More interestingly, triethylamine and hydrochloric acid are selected as encryption and decryption reagents, which can repeatedly switch the emission color of important data. Hence, the high-tech security inks show great potential in data coding, multiencryption, and decryption under UV light. Furthermore, the designed dual-channel memory device, Lap@Eu-OFX@CS (CS = Chitosan), enables reversible synchronous switching of sol-gel and emission color when converting from acid to base conditions.