Skyttemclean5400

Z Iurium Wiki

This paper proposes a novel and innovative methodology to assess the degree of Circularity in one of the most resource-consuming and impactful economic activities the building construction and/or renovation works. The proposed approach measures the ratio of circular flows in three aspects energy, water and materials consumption; and combines them with the measure of social added value and economic value of the entire activity along its life cycle, regardless of being a new building construction or a major renovation work. The whole methodology has been developed under a life cycle perspective, incorporating into the analysis all material flows and social, environmental and economic impacts from cradle to grave, i.e., from resource acquisition to end of life treatment processes or disposal. The proposed Key Performance Indicators (KPIs) measure different and non-directly related parameters (energy, materials, social impact…) and they are both quantitative and qualitative metrics. Hence, the proposed methodolog buildings behave significantly different in each of the addressed CE aspects materials, energy and water use, social added value and life cycle cost; showing also different potential of improvement.Proponents of the newly-developed "deliberative interview" argue that examining complex issues requires more dynamic and engaging interview exchanges. Unlike traditional qualitative interviews, deliberative interviewing champions opinion sharing, active debates and similar speaking times by both sides throughout the interview. Drawing on 20 interviews with health experts in Germany, we examined the process and outcome of deliberative versus conventional interviews on the topic of informed consent. The deliberative interview expedited clarity on the issue, led to more nuanced discussion and generated more knowledge overall, but was challenging because it broke the mold for traditional interviewing. Alignment in terms of gender, age, personality and professional background facilitated rapport, regardless of interview style. To manage expectations, we recommend a thorough, perhaps video-based explanation of the deliberative style prior to the interview. Deliberative interviews can bolster knowledge generation for complex issues and can be applied in public health and beyond.This article draws on life-history interviews with older (aged 50+) people living with HIV in England to uncover the interpretive practices in which they engaged as they evaluated their own quality of life (QoL). Our paper highlights the distinctive insights that biographical and narrative approaches can bring to QoL research. While accounts of subjectively 'poor' QoL were relatively straightforward and unequivocally phrased, accounts of subjectively 'good' and 'OK' QoL were produced using complex interpretive and evaluative practices. These practices involved biographical reflection and contextualization, with participants weighing up and comparing their current lives' 'pros' and 'cons', their own lives with the lives of others, and their present lives with lives they had imagined having at the time of interview. Thus, 'good' and 'OK' QoL were constructed using practical, relational, and interpretive work - features of QoL analytically unavailable in quantitative data gathered through standardised measures (including our own survey data collected from these same participants). Our findings underscore the uneasy fit between QoL's quantitative measurement and its subjective understandings and evaluations, on the one hand, and the interpretive work that goes into achieving these understandings and evaluations, on the other.

In Pakistan, a wide range of repurposed drugs are recommended to manage hospitalized patients with COVID-19. Therefore, the current study was conducted to evaluate the pattern of utilization of repurposed drugs and other potential therapeutic options among hospitalized patients with COVID-19 in Pakistan.

This retrospective, multicenter, descriptive study enrolled consecutive hospitalized patients with COVID-19 who were admitted between March 1, 2021, and April 30, 2021, from three District Headquarter Hospitals in the Punjab province of Pakistan. We described patient and clinical characteristics and medications, stratified by COVID-19 severity during hospitalization mild, moderate, and severe. In addition, an analytical study of drug utilization was conducted.

A total of 444 hospitalized patients with COVID-19 were included. Remdesvir, corticosteroids, antibiotics, and antithrombotics were administered to 45.0%, 93.9%, 84.9%, and 60.1% of patients, respectively. Specifically, dexamethasone was the most commonly used corticosteroid among the included patients (

=405; 91.2%), irrespective of their clinical severity. Only 60.1% of patients hospitalized with COVID-19 in our cohort received antithrombotic therapy, and the prevalence of use was especially low (27.8%) in patients with mild illness. Of 444 patientsscreened, 399 (89.9%) patients had been discharged, and 45 patients (10.1%) died.

We provided an important glimpse into the utilization patterns of several medications of interest for the treatment of COVID-19 in Pakistan, which had not been entirely evidence-based, especially concerning systemic corticosteroids and antibiotics.

We provided an important glimpse into the utilization patterns of several medications of interest for the treatment of COVID-19 in Pakistan, which had not been entirely evidence-based, especially concerning systemic corticosteroids and antibiotics.Ligand-gated ion channels (LGICs) are natural biosensors generating electrical signals in response to the binding of specific ligands. Creating de novo LGICs for biosensing applications is technically challenging. We have previously designed modified LGICs by linking G protein-coupled receptors (GPCRs) to the Kir6.2 channel. In this article, we extrapolate these design concepts to other channels with different structures and oligomeric states, namely a tetrameric viral Kcv channel and the dimeric mouse TREK-1 channel. After precise engineering of the linker regions, the two ion channels were successfully regulated by a GPCR fused to their N-terminal domain. Two-electrode voltage-clamp recordings showed that Kcv and mTREK-1 fusions were inhibited and activated by GPCR agonists, respectively, and antagonists abolished both effects. Thus, dissimilar ion channels can be allosterically regulated through their N-terminal domains, suggesting that this is a generalizable approach for ion channel engineering.There is an urgent need for new drug regimens to rapidly cure tuberculosis. Here, we report the development of drug response assayer (DRonA) and "MLSynergy," algorithms to perform rapid drug response assays and predict response of Mycobacterium tuberculosis (Mtb) to drug combinations. Using a transcriptome signature for cell viability, DRonA detects Mtb killing by diverse mechanisms in broth culture, macrophage infection, and patient sputum, providing an efficient and more sensitive alternative to time- and resource-intensive bacteriologic assays. check details Further, MLSynergy builds on DRonA to predict synergistic and antagonistic multidrug combinations using transcriptomes of Mtb treated with single drugs. Together, DRonA and MLSynergy represent a generalizable framework for rapid monitoring of drug effects in host-relevant contexts and accelerate the discovery of efficacious high-order drug combinations.

The fourth wave of COVID-19 pandemic peaked in the US at 160,000 daily cases, concentrated primarily in southern states. As the Delta variant has continued to spread, we evaluated the impact of accelerated vaccination on reducing hospitalization and deaths across northeastern and southern regions of the US census divisions.

We used an age-stratified agent-based model of COVID-19 to simulate outbreaks in all states within two U.S. regions. The model was calibrated using reported incidence in each state from October 1, 2020 to August 31, 2021, and parameterized with characteristics of the circulating SARS-CoV-2 variants and state-specific daily vaccination rate. We then projected the number of infections, hospitalizations, and deaths that would be averted between September 2021 and the end of March 2022 if the states increased their daily vaccination rate by 20 or 50% compared to maintaining the status quo pace observed during August 2021.

A 50% increase in daily vaccine doses administered to previously uMM acknowledges the support from the Canadian Institutes of Health Research [OV4 - 170643, COVID-19 Rapid Research] and the Natural Sciences and Engineering Research Council of Canada, Emerging Infectious Disease Modelling, MfPH grant. MCF acknowledges support from the National Institutes of Health (5 K01 AI141576).

This study was supported by The Commonwealth Fund. SMM acknowledges the support from the Canadian Institutes of Health Research [OV4 - 170643, COVID-19 Rapid Research] and the Natural Sciences and Engineering Research Council of Canada, Emerging Infectious Disease Modelling, MfPH grant. MCF acknowledges support from the National Institutes of Health (5 K01 AI141576).The wealth of bio-based building blocks produced by engineered microorganisms seldom include halogen atoms. Muconate is a platform chemical with a number of industrial applications that could be broadened by introducing fluorine atoms to tune its physicochemical properties. The soil bacterium Pseudomonas putida naturally assimilates benzoate via the ortho-cleavage pathway with cis,cis-muconate as intermediate. Here, we harnessed the native enzymatic machinery (encoded within the ben and cat gene clusters) to provide catalytic access to 2-fluoro-cis,cis-muconate (2-FMA) from fluorinated benzoates. The reactions in this pathway are highly imbalanced, leading to accumulation of toxic intermediates and limited substrate conversion. By disentangling regulatory patterns of ben and cat in response to fluorinated effectors, metabolic activities were adjusted to favor 2-FMA biosynthesis. After implementing this combinatorial approach, engineered P. putida converted 3-fluorobenzoate to 2-FMA at the maximum theoretical yield. Hence, this study illustrates how synthetic biology can expand the diversity of nature's biochemical catalysis.Mycosis fungoides (MF) is a type of cutaneous T-cell lymphoma. Chlormethine (CL) is recommended as first-line therapy for MF, with a major purpose to kill tumor cells through DNA alkylation. To study the extent of treatment susceptibility and tumor specificity, we investigated the gene expression of different DNA repair pathways, DNA double-stranded breaks, and tumor cell proliferation of clonal TCR Vβ+ tumor cell populations in cutaneous T-cell lymphoma skin cells on direct exposure to CL. Healthy human T cells were less susceptible to CL exposure than two T-lymphoma cell lines, resulting in higher proportions of viable cells. Interestingly, in T cells from MF lesions, we observed a downregulation of several important DNA repair pathways, even complete silencing of RAD51AP1, FANC1, and BRCA2 involved in homologous recombination repair. In the presence of CL, the double-stranded DNA breaks in malignant MF skin T cells increased significantly as well as the expression of the apoptotic gene CASP3. These data point toward an important effect of targeting CL on MF skin tumor T cells, which support CL use as an early cutaneous lymphoma treatment and can be of synergistic use, especially beneficial in the setting of combination skin-directed therapies for cutaneous T-cell lymphoma.

Autoři článku: Skyttemclean5400 (Daly Ahmed)