Skovsgaarddissing6352
al fasciculus, the left hippocampal portion of the cingulum and the left inferior longitudinal fasciculus-predicted reductions in the number of internal details during episodic counterfactual simulations. Taken together, these results help to illuminate impairments in episodic simulation in relapsing-remitting MS and show, for the first time, a differential association between white matter integrity and deficits in episodic counterfactual thinking in individuals with relapsing-remitting MS.Many countries use uniform cost-effectiveness criteria to determine whether to adopt a new medical technology for the entire population. This approach assumes homogeneous preferences for expected health benefits and side effects. We examine whether new prescription drugs generate welfare gains when accounting for heterogeneous preferences by constructing quality-adjusted price indices in the market for colorectal cancer drug treatments. We find that while the efficacy gains from newer drugs do not justify high prices for the population as a whole, innovation improves the welfare of sicker, late-stage cancer patients. A uniform evaluation criterion would not permit these innovations despite welfare gains to a subpopulation.This study presents a methodology based on the dual-mode gamma densitometry technique in combination with artificial neural networks to simultaneously determine type and quantity of four different fluids (Gasoline, Glycerol, Kerosene and Fuel Oil) to assist operators of a fluid transport system in pipelines commonly found in the petrochemical industry, as it is necessary to continuously monitor information about the fluids being transferred. The detection system is composed of a 661.657 keV (137Cs) gamma-ray emitting source and two NaI(Tl) scintillation detectors to record transmitted and scattered photons. The information recorded in both detectors was directly applied as input data for the artificial neural networks. The proposed intelligent system consists of three artificial neural networks capable of predicting the fluid volume percentages (purity level) with 94.6% of all data with errors less than 5% and MRE of 1.12%, as well as identifying the pair of fluids moving in the pipeline with 95.9% accuracy.The use of polystyrene micro and nanoplastics in cosmetics and personal care products continues to grow every day. The harmful effects of their biological accumulation in organisms of all trophic levels including humans have been reported by several studies. While we have accumulating evidence on the impact of nanoplastics on different organ systems in humans, only a handful of reports on the impact of polystyrene nanoplastics upon direct contact with the immune system at the cellular level are avialable. The present study offers significant evidence on the cell-specific harmful impact of sulfate-modified nanoplastics (S-NPs) on human macrophages. Here we report that exposure of human macrophages to S-NPs (100 µg/mL) stimulated the accumulation of lipids droplets (LDs) in the cytoplasm resulting in the differentiation of macrophages into foam cells. The observed effect was specific for human and murine macrophages but not for other cell types, especially human keratinocytes, liver, and lung cell models. Furthermore, we found that S-NPs mediated LDs accumulation in human macrophages was accompanied by acute mitochondrial oxidative stress. The accumulated LDs were further delivered and accumulated into lysosomes leading to impaired lysosomal clearance. In conclusion, our study reveals that exposure to polystyrene nanoplastics stabilized with anionic surfactants can be a potent stimulus for dysregulation of lipid metabolism and macrophage foam cell formation, a characteristic feature observed during atherosclerosis posing a serious threat to human health.Sustainable industrial development requires research on pollution control in industrial wastewater, particularly sulfate-rich wastewater, which poses a threat to the environment. This article differs from the previous sulfate wastewater treatment process and equipment review. Based on the quantitative analysis, this paper has determined some characteristics of the related literature on the pollution control technology of high-concentration sulfate wastewater to help researchers establish future research directions. From 1991-2020, the WoS database published 9473 articles related to high-concentration sulfate wastewater treatment technology. We used bibliometric analysis combined with social network analysis and s-curve technical analysis in this research. The United States was the first to start this type of research, Australia has insightful and instructive research articles in this area, and China is the most active in international cooperation. The keywords that appear most frequently in the dataset are degradation, adsorption, oxidation, reduction, and recovery. By S-curve fitting, it is known that biological treatment methods are closer to the maturity stage than physical and chemical treatment methods.The analysis of soil bacterial community has guiding significance for fully utilization of soil microbial resources. The results of high-throughput sequencing (HTS) showed that the bacteria in the three sulfometuron-methyl contaminated soil samples were mainly composed of 677 genera, including Phenylobacterium, Bacillus, belonging to 28 phyla, including Proteobacteria, Firmicutes. The diversity and richness of bacterial community decreased with the increase in sulfometuron-methyl concentration. In addition, sulfometuron-methyl could also affect the soil bacterial function based on PICRUSt functional predictive analysis. Combined with the results of HTS and phylogenetic molecular ecological networks (pMENs), 12 genera, including Ralstonia (Pi=0.64), were identified as the key soil microflora (intra-module connectivity Zi ≥ 2.5 or inter-module connectivity Pi ≥ 0.62), and the abundance of Ralstonia significantly increased with the concentration of sulfometuron-methyl, indicating that the strains of this genus miation of STM and other contaminated soils.An average daily increase of 10 μg/m3 in NO2 concentrations could lead to an increased mortality in cardiovascular, cerebrovascular of 1.89%, 2.07%, but the mechanism by which NO2 contributes to cardiotoxicity is rarely reported. In order to assess the cardiotoxicity of NO2 inhalation (5 ppm), we firstly investigate the change of gut microbiota, serum metabonomics and cardiac proteome. Non-targeted LC-MS/MS metabonomics showed that NO2 stress could perturb the glycerophospholipid metabolism in the serum, which might destabilize the bilayer configuration of cardiac lipid membranes. Furthermore, we observed that NO2 inhalation caused augmented intercellular gap and inflammatory infiltration in the heart. Although 16 S rRNA gene amplification sequencing demonstrated that NO2 exposure did not influence the intestinal microbial abundance and diversity, but glycerophospholipid metabolism disruption might be finally reflected in gut microbiom dysregulation, such as Sphingomonas, Koribacter, Actinomarina and Bradyrhizobium Turicibacter, Rothia, Globicatella and Aerococcus. Proteome mining revealed that differentially expressed genes (DEGs) in the heart after NO2 stress were involved in necroptosis, mitophagy and ferroptosis. We further revealed that NO2 increased the number of cardiac mitochondria with depletion of cristae by regulating the expression of Mfn2 and Hsp70. This study indicating Mfn2-meidcated imbalanced mitochondrial dynamics as a potential mechanism after NO2-induced heart injury and suggesting microbiome dysregulation/glycerophospholipid metabolism exerts critical roles in cardiotoxicity caused by NO2.Sulfamethoxazole (SMX) is a widespread broad-spectrum bacteriostatic antibiotic. Its residual is frequently detected in the water and may therefore bioaccumulate in the brain of aquatic organisms via blood circulation. Brain capillaries toxicity is very important for brain development. However, little information is available in the literature to show the toxicity of SMX to brain development. To study the SMX's brain toxic effects and the related mechanisms, we exposed zebrafish embryos to SMX at different concentrations (0 ppm, 1 ppm, 25 ppm, 100 ppm and 250 ppm) and found that high concentration (250 ppm) of SMX would not only caused an abnormal in malformation rate, hatching rate, body length and survival rate of zebrafish embryos, but also lead to brain oedema. In addition, SMX also induced cerebral ischaemia, aggravates oxidative stress, and changes genes related to oxidative stress (sod1, cat, gpx4, and nrf2). Furthermore, ischaemia caused by SMX could promote ectopic angiogenesis in brain via activating the angiogenesis-related genes (vegfab, cxcr4a, cxcl12b) from 24 h to 53 h. Inhibition of VEGF signalling by SU5416, or inhibition of chemokine downstream PI3K signalling by LY294002, could rescue the brain capillaries toxicity and brain oedema induced by SMX. Our results provide new evidence for the brain toxicity of SMX and its residual danger in the environment and aquatic organisms.Temperate-zone birds display marked seasonal changes in reproductive behaviors and the underlying hormonal and neural mechanisms. These changes were extensively studied in canaries (Serinus canaria) but differ between strains. Fife fancy male canaries change their reproductive physiology in response to variations in day length but it remains unclear whether they become photorefractory (PR) when exposed to long days and what the consequences are for gonadal activity, singing behavior and the associated neural plasticity. Photosensitive (PS) male birds that had become reproductively competent (high song output, large testes) after being maintained on short days (SD, 8 L16D) for 6 months were divided into two groups control birds remained on SD (SD-PS group) and experimental birds were switched to long days (16 L8D) and progressively developed photorefractoriness (LD-PR group). During the following 12 weeks, singing behavior (quantitatively analyzed for 3 × 2 hours every week) and gonadal size (repeatedly measured by CT X-ray scans) remained similar in both groups but there was an increase in plasma testosterone and trill numbers in the LD-PR group. Day length was then decreased back to 8 L16D for LD-PR birds, which immediately induced a cessation of song, a decrease in plasma testosterone concentration, in the volume of song control nuclei (HVC, RA and Area X), in HVC neurogenesis and in aromatase expression in the medial preoptic area. These data demonstrate that Fife fancy canaries readily respond to changes in photoperiod and display a pattern of photorefractoriness following exposure to long days that is associated with marked changes in brain and behavior.Slagging-gasification has received increasing attention as a municipal solid waste treatment technology. Compared with incineration, slagging-gasification can produce valuable syngas and generates by-products that can be easier reusable in different applications in some cases. Among these by-products, the gasification fly ash (GFA) is the only hazardous solid residue to be landfilled. To explore its potential recycling methods and maximize its recycling efficiency, the detailed physicochemical properties of GFA are crucial. This study conducted a comprehensive characterization of six GFA samples and the results were compared with one incineration fly ash (IFA) sample and available data of IFA collected in Singapore in literature. CT-707 X-ray fluorescence (XRF), and microwave acid digestion (MAD) followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma mass spectroscopy (ICP-MS) were carried out to determine the physicochemical composition of ashes. X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were applied to identify their mineralogical composition.