Skovbjergbrowne0760

Z Iurium Wiki

In this work, we explore the relevant methodology for the investigation of interacting systems with contact interactions, and we introduce a class of zonal estimators for path-integral Monte Carlo methods, designed to provide physical information about limited regions of inhomogeneous systems. read more We demonstrate the usefulness of zonal estimators by their application to a system of trapped bosons in a quasiperiodic potential in two dimensions, focusing on finite temperature properties across a wide range of values of the potential. Finally, we comment on the generalization of such estimators to local fluctuations of the particle numbers and to magnetic ordering in multi-component systems, spin systems, and systems with nonlocal interactions.The initial field has a crucial influence on numerical weather prediction (NWP). Data assimilation (DA) is a reliable method to obtain the initial field of the forecast model. At the same time, data are the carriers of information. Observational data are a concrete representation of information. DA is also the process of sorting observation data, during which entropy gradually decreases. Four-dimensional variational assimilation (4D-Var) is the most popular approach. However, due to the complexity of the physical model, the tangent linear and adjoint models, and other processes, the realization of a 4D-Var system is complicated, and the computational efficiency is expensive. Machine learning (ML) is a method of gaining simulation results by training a large amount of data. It achieves remarkable success in various applications, and operational NWP and DA are no exception. In this work, we synthesize insights and techniques from previous studies to design a pure data-driven 4D-Var implementation framework named ML-4DVAR based on the bilinear neural network (BNN). The framework replaces the traditional physical model with the BNN model for prediction. Moreover, it directly makes use of the ML model obtained from the simulation data to implement the primary process of 4D-Var, including the realization of the short-term forecast process and the tangent linear and adjoint models. We test a strong-constraint 4D-Var system with the Lorenz-96 model, and we compared the traditional 4D-Var system with ML-4DVAR. The experimental results demonstrate that the ML-4DVAR framework can achieve better assimilation results and significantly improve computational efficiency.We studied the stable marriage problem with dynamic preferences. The dynamic preference model allows the agent to change its preferences at any time, which may cause instability in a matching. However, preference changing in SMP instances does not necessarily break all pairs of an existing match. Sometimes, only a few couples want to change their partners, while others choose to stay with their current partners; this motivates us to find stable matching on a new instance by updating an existing match rather than restarting the matching process from scratch. By using the update mechanism, we try to minimize the revision cost when rematching occurs. The challenge when updating a matching is that a cyclic process may exist, and stable matching is never achieved. Our proposed mechanism can update a match and avoid the cyclic process.A possible detection of sub-solar mass ultra-compact objects would lead to new perspectives on the existence of black holes that are not of astrophysical origin and/or pertain to formation scenarios of exotic ultra-compact objects. Both possibilities open new perspectives for better understanding of our universe. In this work, we investigate the significance of detection of sub-solar mass binaries with components mass in the range 10-2M⊙ up to 1M⊙, within the expected sensitivity of the ground-based gravitational waves detectors of third generation, viz., the Einstein Telescope (ET) and the Cosmic Explorer (CE). Assuming a minimum of amplitude signal-to-noise ratio for detection, viz., ρ=8, we find that the maximum horizon distances for an ultra-compact binary system with components mass 10-2M⊙ and 1M⊙ are 40 Mpc and 1.89 Gpc, respectively, for ET, and 125 Mpc and 5.8 Gpc, respectively, for CE. Other cases are also presented in the text. We derive the merger rate and discuss consequences on the abundances of primordial black hole (PBH), fPBH. Considering the entire mass range [10-2-1]M⊙, we find fPBH less then 0.70 ( less then 0.06) for ET (CE), respectively.Schrödinger noticed in 1952 that a scalar complex wave function can be made real by a gauge transformation. The author showed recently that one real function is also enough to describe matter in the Dirac equation in an arbitrary electromagnetic or Yang-Mills field. This suggests some "symmetry" between positive and negative frequencies and, therefore, particles and antiparticles, so the author previously considered a description of one-particle wave functions as plasma-like collections of a large number of particles and antiparticles. The description has some similarities with Bohmian mechanics. This work offers a criterion for approximation of continuous charge density distributions by discrete ones with quantized charge based on the equality of partial Fourier sums, and an example of such approximation is computed using the homotopy continuation method. An example mathematical model of the description is proposed. The description is also extended to composite particles, such as nucleons or large molecules, regarded as collections including a composite particle and a large number of pairs of elementary particles and antiparticles. While it is not clear if this is a correct description of the reality, it can become a basis of an interesting model or useful picture of quantum mechanics.Although the unconditional security of quantum key distribution (QKD) has been widely studied, the imperfections of the practical devices leave potential loopholes for Eve to spy the final key. Thus, how to evaluate the security of QKD with realistic devices is always an interesting and opening question. In this paper, we briefly review the development of quantum hacking and security evaluation technology for a practical decoy state BB84 QKD system. The security requirement and parameters in each module (source, encoder, decoder and detector) are discussed, and the relationship between quantum hacking and security parameter are also shown.An important aspect of using entropy-based models and proposed "synthetic languages", is the seemingly simple task of knowing how to identify the probabilistic symbols. If the system has discrete features, then this task may be trivial; however, for observed analog behaviors described by continuous values, this raises the question of how we should determine such symbols. This task of symbolization extends the concept of scalar and vector quantization to consider explicit linguistic properties. Unlike previous quantization algorithms where the aim is primarily data compression and fidelity, the goal in this case is to produce a symbolic output sequence which incorporates some linguistic properties and hence is useful in forming language-based models. Hence, in this paper, we present methods for symbolization which take into account such properties in the form of probabilistic constraints. In particular, we propose new symbolization algorithms which constrain the symbols to have a Zipf-Mandelbrot-Li distribution which approximates the behavior of language elements. We introduce a novel constrained EM algorithm which is shown to effectively learn to produce symbols which approximate a Zipfian distribution. We demonstrate the efficacy of the proposed approaches on some examples using real world data in different tasks, including the translation of animal behavior into a possible human language understandable equivalent.Studying heart rate dynamics would help understand the effects caused by a hyperkinetic heart in patients with hyperthyroidism. By using a multiscale entropy (MSE) analysis of heart rate dynamics derived from one-channel electrocardiogram recording, we aimed to compare the system complexity of heart rate dynamics between hyperthyroid patients and control subjects. A decreased MSE complexity index (CI) computed from MSE analysis reflects reduced system complexity. Compared with the control subjects (n = 37), the hyperthyroid patients (n = 37) revealed a significant decrease (p less then 0.001) in MSE CI (hyperthyroid patients 10.21 ± 0.37 versus control subjects 14.08 ± 0.21), sample entropy for each scale factor (from 1 to 9), and high frequency power (HF) as well as a significant increase (p less then 0.001) in low frequency power (LF) in normalized units (LF%) and ratio of LF to HF (LF/HF). In conclusion, besides cardiac autonomic dysfunction, the system complexity of heart rate dynamics is reduced in hyperthyroidism. This finding implies that the adaptability of the heart rate regulating system is impaired in hyperthyroid patients. Additionally, it might explain the exercise intolerance experienced by hyperthyroid patients. In addition, hyperthyroid patients and control subjects could be distinguished by the MSE CI computed from MSE analysis of heart rate dynamics.Flash crashes in financial markets have become increasingly important, attracting attention from financial regulators, market makers as well as from the media and the broader audience. Systemic risk and the propagation of shocks in financial markets is also a topic of great relevance that has attracted increasing attention in recent years. In the present work, we bridge the gap between these two topics with an in-depth investigation of the systemic risk structure of co-crashes in high frequency trading. We find that large co-crashes are systemic in their nature and differ from small ones. We demonstrate that there is a phase transition between co-crashes of small and large sizes, where the former involves mostly illiquid stocks, while large and liquid stocks are the most represented and central in the latter. This suggests that systemic effects and shock propagation might be triggered by simultaneous withdrawals or movement of liquidity by HFTs, arbitrageurs and market makers with cross-asset exposures.Although a lot of research and development has been done to understand and master the major physics involved in cryogenic rocket engines (combustion, feeding systems, heat transfer, stability, efficiency, etc.), the injection system and wall heat transfer remain critical issues due to complex physics, leading to atomization in the subcritical regime and the interactions of hot gases with walls. In such regimes, the fuel is usually injected through a coaxial annulus and triggers the atomization of the central liquid oxidizer jet. This type of injector is often referred to as air-assisted, or coaxial shear, injector, and has been extensively studied experimentally. Including such injection in numerical simulations requires specific models as simulating the atomization process is still out of reach in practical industrial systems. The effect of the injection model on the flame stabilization process and thus on wall heat fluxes is of critical importance when it comes to the design of wall-cooling systems. Indeed, maximizing the heat flux extracted from the chamber can lead to serious gain for the cooling and feeding systems for expander-type feeding cycles where the thermal energy absorbed by the coolant is converted into kinetic energy to drive the turbo-pumps of the feeding system.

Autoři článku: Skovbjergbrowne0760 (Kudsk Patrick)