Skippermaldonado7760
Therefore, this work helps understand the physical mechanisms of the piezoelectricity enhancement, benefiting the future research of lead-free piezoceramics.Photothermal therapy (PTT) is considered an alternative for oncotherapy because it has less invasive damage to normal tissues than other methods, particularly in second near-infrared (NIR-II) PTT (1000-1350 nm) because of deeper biological tissue penetration, lower photon scattering, and higher maximum permissible exposure (1.0 W cm-2). However, for achieving a higher therapeutic effect, the delivery of large amounts of NIR-sensitive agents has been pursued, which in turn enormously increases damage to normal cells. Herein, we developed peptide-coated platinum nanoparticles (TPP-Pt) to create violent damage for a given amount of hyperthermia by purposefully delivering TPP-Pt to the thermally susceptible mitochondria with minimal side effects. Mitochondrial peptide targeting endowed ultrasmall platinum nanoparticles (PtNPs) with monodispersity, high stability, biosafety, and enhanced uptake of cancer cells and priority of mitochondria, causing efficient PTT. Moreover, an in vivo experiment showed that the excellent tumor inhibitory effect and negligible side effects could be achieved with the preferentially striking thermosensitive mitochondria strategy. The mitochondria-based "win by one move" therapeutic platform of peptide-coated platinum nanoparticles (TPP-Pt) demonstrated here will find great potential to overcome the challenges of low therapeutic efficiency and strong systemic side effects in PTT.The surface functionalization of cellulose nanocrystals (CNCs) is of significant importance for promoting its diverse applications. However, the efficient strategy reported so far for cation functionalization of CNCs remains limited owing to the electrostatic attraction between cationic modifiers and electronegative CNCs. Herein, a cationized CNC (CNC-LA-IL) has been successfully prepared in aqueous media by grafting the [VBIm][BF4], a kind of ionic liquid (IL), on the surface of a sulfated CNC using lactic acid (LA) as a linker molecule. This surface functionalization not only converts the negative charge of CNC suspensions to a positive charge (zeta potential reversed from -35 to +40 mV) but also leads to enhanced thermal stability and redispersibility of the dried CNC. To examine the reinforcing effect of IL-modified CNCs, poly(vinyl alcohol) (PVA)/CNC-LA-IL nanocomposite films were further prepared by the solution casting method. To one's surprise, the as-prepared PVA/CNC-LA-IL films exhibit extraordinary improvement in both the tensile strength (92%) and the toughness (166%) with only a 0.3 wt % CNC loading. This study provides a green and facile method to achieve ionic liquids grafted CNCs for high-performance nanocomposites.The applications of triplet-triplet annihilation-based photon upconversion (TTA-UC) in solar devices have been limited by the challenges in designing a TTA-UC system that is efficient under aerobic conditions. Efficient TTA-UC under aerobic conditions is typically accomplished by using soft matter or solid-state media, which succeed at protecting the triplet excited states of upconverters (sensitizer and annihilator) from quenching by molecular oxygen but fail at preserving their mobility, thus limiting the TTA-UC efficiency (ΦUC). this website We showcase a protein/lipid hydrogel that succeeded in doing both of the above due to its unique multiphasic design, with a high ΦUC of 19.0 ± 0.7% using a palladium octaethylporphyrin sensitizer. This hydrogel was made via an industrially compatible method using low-cost and eco-friendly materials bovine serum albumin (BSA), sodium dodecyl sulfate (SDS), and water. A dense BSA network provided oxygen protection while the encapsulation of upconverters within a micellar SDS environment preserved upconverter mobility, ensuring near-unity triplet energy transfer efficiency. In addition to heavy atom-containing sensitizers, several completely organic, spin-orbit charge-transfer intersystem crossing (SOCT-ISC) Bodipy-based sensitizers were also studied; one of which achieved a ΦUC of 3.5 ± 0.2%, the only reported SOCT-ISC-sensitized ΦUC in soft matter to date. These high efficiencies showed that our multiphasic design was an excellent platform for air-tolerant TTA-UC and that it can be easily adapted to a variety of upconverters.Artificial visual system with information sensing, processing, and memory function is promoting the development of artificial intelligence techniques. Photonic synapse as an essential component can enhance the visual information processing efficiency owing to the high propagation speed, low latency, and large bandwidth. Herein, photonic synaptic transistors based on organic semiconductor poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPPDTT) and perovskite CsPbBr3 quantum dots are fabricated by a simple solution process. The device can simulate fundamental synaptic behaviors, including excitatory postsynaptic current, pair-pulse facilitation, the transition of short-term memory to long-term memory, and "learning experience" behavior. Combining the advantages of the high photosensitivity of perovskites and relatively high conductivity of DPPDTT, the device can exhibit excellent synaptic performances at a low voltage of -0.2 V. Even under an ultralow operation voltage of -0.0005 V, the device can still show obvious synaptic responses. Tunable synaptic integration behaviors including "AND" and "OR" light logic functions can be realized. An artificial visual system is successfully emulated by illuminating the synaptic arrays employing light of different densities. Therefore, low-voltage synaptic devices based on organic semiconductor and CsPbBr3 quantum dots with a simple fabrication technique present high potential to mimic human visual memory.With the growing development of the Internet of Things, organic photovoltaic (OPV) cells are highly desirable for indoor applications because of the unique features of light weight, flexibility, and coloration. Emission spectra of the commonly used indoor light sources are much narrower with lower light intensity as compared to the standard solar spectrum. High tunability in optical absorption, insensitivity to series resistance and the active layer thickness, and mild operating conditions make indoor OPV cells promising as a practically relevant technology. Currently, the OPV module has obtained a power conversion efficiency of over 20%, with excellent stability under indoor conditions. However, at the present stage, the device physics investigations and material design strategies developed in an OPV cell for indoor applications lag behind those for outdoor applications. In particular, the emerging characterizations in photovoltaic measurements have severely affected the reliability of reports. This Spotlight on Applications highlights these opportunities and challenges of OPV cells for indoor applications and reviews the recent progress in indoor OPV cells.