Singhpower1167
atment for the current pandemic.In this paper, thiourea was successfully grafted onto the surface of acid preprocessed graphite felts [sulfuric acid-treated graphite felt (SA-GFs)] by thiol-carboxylic acid esterification. The thiourea-grafted graphite felts (TG-GFs) were investigated as the positive electrode for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggested that thiourea was grafted into the surface of graphite felts. The cyclic voltammetry showed that the peak potential separation decreased by 0.2 V, and peak currents were greatly enhanced on TG-GF electrode compared with SA-GF electrode, implying improved electro-catalytic activity and reversibility of TG-GF electrode toward VO2+/ VO 2 + redox reaction. The initial capacity of TG-GF-based cell reached 55.6 mA h at 100 mA cm-2, 22.6 mA h larger than that of SA-GF-based cell. The voltage and energy efficiency for TG-GF-based cell increased by 4.9% and 4.4% compared with those of SA-GF-based cell at 100 mA cm-2, respectively.The search for novel surfactants or drug delivery systems able to improve the performance of old-generation antibiotics is a topic of great interest. Self-assembling amphiphilic calix[4]arene derivatives provide well-defined nanostructured systems that exhibit promising features for antibiotics delivery. In this work, we investigated the capability of two micellar polycationic calix[4]arene derivatives to recognize and host ofloxacin, chloramphenicol, or tetracycline in neutral aqueous solution. The formation of the nanoaggregates and the host-guest equilibria were examined by nano-isothermal titration calorimetry, dynamic light scattering, and mono- and bi-dimensional NMR. The thermodynamic characterization revealed that the calix[4]arene-based micellar aggregates are able to effectively entrap the model antibiotics and enabled the determination of both the species and the driving forces for the molecular recognition process. Indeed, the formation of the chloramphenicol-micelle adduct was found to be enthalpy driven, whereas entropy drives the formation of the adducts with both ofloxacin and tetracycline. NMR spectra corroborated ITC data about the positioning of the antibiotics in the calixarene nanoaggregates.Oral squamous cell carcinoma is the most common malignancy of oral tumor. In this study, two novel hybrids of podophyllotoxin and coumarin were designed using molecular hybridization strategy and synthesized. Pharmacological evaluation showed that the potent compound 12b inhibited the proliferation of three human oral squamous carcinoma cell lines with nanomolar IC50 values, as well as displayed less toxicity on normal cells. Mechanistic studies indicated that 12b triggered HSC-2 cell apoptosis, induced cell cycle arrest, and inhibited cell migration. Moreover, 12b could disturb the microtubule network via binding into the tubulin. 3-O-Acetyl-11-keto-β-boswellic clinical trial It was noteworthy that induction of autophagy by 12b was associated with the upregulation of Beclin1, as well as LC3-II. Furthermore, 12b significantly stimulated the AMPK pathway and restrained the AKT/mTOR pathway in HSC-2 cells. These results indicated that compound 12b was a promising candidate for further investigation.Arginase catalyzes the hydrolysis of l-arginine into l-ornithine and urea, acting as a key enzyme in the biosynthesis of polyamines. Leishmania growth and survival is dependent on polyamine biosynthesis; therefore, inhibition of Leishmania arginase may be a promising therapeutic strategy. Here, we evaluated a series of thirty-six chalcone derivatives as potential inhibitors of Leishmania infantum arginase (LiARG). In addition, the activity of selected inhibitors against L. infantum parasites was assessed in vitro. Seven compounds exhibited LiARG inhibition above 50% at 100 μM. Among them, compounds LC41, LC39, and LC32 displayed the greatest inhibition values (72.3 ± 0.3%, 71.9 ± 11.6%, and 69.5 ± 7.9%, respectively). Molecular docking studies predicted hydrogen bonds and hydrophobic interactions between the most active chalcones (LC32, LC39, and LC41) and specific residues from LiARG's active site, such as His140, Asn153, His155, and Ala193. Compound LC32 showed the highest activity against L. infantum promastigotes (IC50 of 74.1 ± 10.0 μM), whereas compounds LC39 and LC41 displayed the best results against intracellular amastigotes (IC50 of 55.2 ± 3.8 and 70.4 ± 9.6 μM, respectively). Moreover, compound LC39 showed more selectivity against parasites than host cells (macrophages), with a selectivity index (SI) of 107.1, even greater than that of the reference drug Fungizone®. Computational pharmacokinetic and toxicological evaluations showed high oral bioavailability and low toxicity for the most active compounds. The results presented here support the use of substituted chalcone skeletons as promising LiARG inhibitors and antileishmanial drug candidates.Super-resolution microscopy offers a non-invasive and real-time tool for probing the subcellular structures and activities on nanometer precision. Exploring adequate luminescent probes is a great concern for acquiring higher-resolution image. Benefiting from the atomic-like transitions among real energy levels, lanthanide-doped upconversion nanoparticles are featured by unique optical properties including excellent photostability, large anti-Stokes shifts, multicolor narrowband emissions, tunable emission lifetimes, etc. The past few years have witnessed the development of upconversion nanoparticles as probes for super-resolution imaging studies. To date, the optimal resolution reached 28 nm (λ/36) for single nanoparticles and 82 nm (λ/12) for cytoskeleton structures with upconversion nanoparticles. Compared with conventional probes such as organic dyes and quantum dots, upconversion nanoparticle-related super-resolution microscopy is still in the preliminary stage, and both opportunities and challenges exist. In this perspective article, we summarized the recent advances of upconversion nanoparticles for super-resolution microscopy and projected the future directions of this emerging field. This perspective article should be enlightening for designing efficient upconversion nanoprobes for super-resolution imaging and promote the development of upconversion nanoprobes for cell biology applications.