Silverkearns9600

Z Iurium Wiki

We found that Fe(II) correctly identified the Pinatubo/Cerro Hudson eruption in the DC record, demonstrating its reliability as volcanic tracer, while, on the HDF core, we provided the first preliminary insight on the processes that might influence Fe speciation in firn matrices (i.e. organic ligands and pH influences).A highly efficient bioflocculant, i.e., Na-Bsp was successfully prepared by using a tolerant strain-Bacillus sp. under high-salt condition without sterilization. Salt-containing medium was not infected by other strains throughout the whole incubation period in 168 h. The as-prepared Na-Bsp was found to be cation-dependent, exhibiting high flocculant efficiency (FE) i.e., 97.69 ± 0.61%, towards kaolin particles by aid of Fe3+. High FE values were well maintained under a wide pH range and/or boiled water treatment, likely because of the main constituent of polysaccharide. The presence of hydroxyl, carboxyl, and amine groups on the bioflocculant surface were possibly responsible for strong interactions with heavy metals. The adsorption capacities of Pb2+, Cu2+ and Cr6+ were 1000.0, 434.8 and 384.6 mg g-1, respectively. The changing of structure and configuration of bioflocculant during the metal adsorption were explored by the scanning electron microscope with electron energy loss spectroscopy and three-dimensional excitation-emission fluorescence spectrometry. This study provided a novel production method, whereby the conventional sterilization could be avoided, which is of great environmental significance for steam-saving. Furthermore, the as-prepared Na-Bsp exhibited high adsorption capacities toward heavy metals, which sheds lights on its potential usage as an alternative adsorbent.Microplastic debris has become a significant global environmental issue. Pamapimod concentration Yet, the effects on ingestion of microplastics by protozoan grazers-an important link in the microbial loop-are scant. Feeding experiments were conducted with the free-living marine ciliate Uronema marinum grazing on cultured bacteria Pseudoaltermonas sp., exposing them to different concentrations or sizes of polystyrene beads for 96 h. The number of beads decreased during exposure experiments. Under the microplastic influence, the ciliate cells were observed to decrease in abundance, body size, and biomass. It was noted that the ciliate biomass in the highest microplastic density treatment was significantly lower than that in the control (98.1% lower) and that microplastics can be ingested by ciliate protozoa which performed an important role in the transportation of energy across the microbial loop. Moreover, carbon biomass of ciliates exposed to microplastics of different particle diameters decreased significantly compared to the control. However, this effect does not seem to vary depending on microplastic sizes. This study is a first step in providing experimental insight into the feeding relationship between microplastics and marine protozoan grazers. Further research based on components of the microbial loop is needed to explore the impacts of microplastics in marine food webs.In this study, known combinations of Advanced Oxidation Processes (AOPs, namely Electro-Fenton (EF), Photo-Electro-Fenton (PEF), Electro-Oxidation (EO), and EO/Ozone (O3) were compared for the discoloration of tannery industry azo dye Brown HT (BHT). The different AOPs were tested in a 0.160 L batch electrochemical stirred thank reactor using Boron Doped Diamond (BDD) electrodes. The influence of parameters such as the current density (j) and the initial BHT concentration were to exanimated on the efficiency of all the tested processes. The oxidation tendency of EF, and PEF were compared with those of EO and O3, based on their efficiency for BHT discoloration, which resulted as PEF > EF > EO > O3. The AOPs showing the best oxidation performance was PEF which, using Na2SO4 (0.05 M) electrolyte solution and Fe2+ (0.5 mM), pH 3.0, j = 71 mA cm-2, and 500 rpm process, achieved 100% discoloration and 80% chemical oxygen demand (COD) abatement after 60 min of treatment for two initial BHT concentrations (50 and 80 mg L-1). The process accounted for a current efficiency of 30% and energy consumption 2.25 kWh (g COD)-1 through the discoloration test. The azo dye gradually degraded, yielding non-toxic oxalic, oxamic, and glyoxylic acid, whose Fe(III) complexes were quickly photolyzed.Vegetated biofiltration systems (biofilters) are now a well-established technology for treatment of urban stormwater, typically showing high nutrient uptake. However, the impact of high temporal variability of rainfall events (further exacerbated by climate change) on nitrogen and phosphorus removal processes, within different biofiltration designs, is still unknown. Hence, a laboratory-based study was conducted to uncover mechanisms behind nutrient removal in biofilters across different drying and wetting regimes. Two sets of experimental columns were based on (1) the standard biofiltration design (unsaturated zone only), and (2) combination of unsaturated and saturated (submerged) zone (SZ) with additional carbon source. Columns were watered with synthetic stormwater according to three drying and wetting schemes, exploring 1, 2, 3, 4 and 7-week drying. Hydraulic performance, soil moisture and pollutant removal were monitored. The results show that hydraulic conductivity of SZ design experiences less change over time compared to standard design, due to slower media drying, crack formation and lower plant die-off. Varied drying lengths challenged both designs differently, with 2-week drying resulting in significant drop of performance across most pollutants in standard design (except ammonia), while SZ design was able to retain high performance for up to four weeks of drying, sustaining microbial and plant uptake. Increased oxygenation of SZ columns during short-term drying was beneficial for ammonia and phosphorus removal. While SZ design showed better performance and quicker recovery for nitrogen removal, in regions with inter-rain event shorter than two weeks, the standard design (no saturated zone, no carbon source) can achieve similar if not better results.

Autoři článku: Silverkearns9600 (McCullough Dalby)